题目内容

有编号为1,2,3的三个盒子和10个相同的小球,把这10个小球全部装入3个盒子,使得每个盒子所装小球数不小于盒子的编号数,这种装法共有(  )
A、9B、12C、15D、18
考点:计数原理的应用
专题:排列组合
分析:首先保证放入和编号相同的球数,只需分析剩下的球的不同方法即可.
解答: 解:先放1,2,3的话,那么还剩下4个球,4个球放到3个不同的盒子里,情况有:
0,0,4,分别在1,2,3号盒子中的任意一个中放4个,共3种情况;
0,1,3,分别在1,2,3号盒子中的任意两个中放3个和1个,共6种情况;
0,2,2,分别在1,2,3号盒子中的任意两个中放2个,共3种情况;
1,1,2分别在1,2,3号盒子中的任意两个中放2个和1个,共3种情况;
∴3+6+3+3=15种.
故选:C.
点评:本题考查了分类计数原理的应用密切,解题的关键是要注意仔细分析题目,做到分类时不重不漏,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网