题目内容
已知定义域为R的函数y=f(x)在[0,7]上只有1和3两个零点,且y=f(2-x)与y=(7+x)都是偶函数,则函数y=f(x)在[-2013,2013]上的零点个数为( )
| A、804 | B、805 |
| C、806 | D、807 |
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:根据y=f(2-x)与y=f(7+x)都是偶函数,得到函数f(x)=f(10+x)即函数是周期函数,利用函数的周期性即可得到函数零点的个数.
解答:
解:∵y=f(2-x)与y=f(7+x)都是偶函数,
∴f(2-x)=f(2+x),f (7+x)=f(7-x),即f(x)关于x=2和x=7对称.
∵f(2-x)=f(2+x),∴f(4-x)=f(x);
∵f(7-x)=f(7+x),∴f(4-x)=f(10+x),∴f(x)=f(10+x),
即10是函数f(x)的一个周期.
∵f(7-x)=f(7+x),函数f(x)在[4,7]上无根.∴函数f(x)在[7,10]上无根.
∴f(x)=0在[0,10]上恰有两根为1和3.
f(x)=0的根为10n+1或10n+3的形式.
∴0≤10n+1≤2013,解得0≤n≤201.2,共202个
∴0≤10n+3≤2013,解得0≤n≤201,共202个,
∴方程f(x)=0在闭区间[0,2013]上根的个数为404个,
同理可得,方程f(x)=0在区间[-2013,0)上根的个数为402个,
故方程f(x)=0在[-2013,2013]上的根的个数为806个,
故函数y=f(x)在[-2013,2013]上的零点个数为806个,
故选:C.
∴f(2-x)=f(2+x),f (7+x)=f(7-x),即f(x)关于x=2和x=7对称.
∵f(2-x)=f(2+x),∴f(4-x)=f(x);
∵f(7-x)=f(7+x),∴f(4-x)=f(10+x),∴f(x)=f(10+x),
即10是函数f(x)的一个周期.
∵f(7-x)=f(7+x),函数f(x)在[4,7]上无根.∴函数f(x)在[7,10]上无根.
∴f(x)=0在[0,10]上恰有两根为1和3.
f(x)=0的根为10n+1或10n+3的形式.
∴0≤10n+1≤2013,解得0≤n≤201.2,共202个
∴0≤10n+3≤2013,解得0≤n≤201,共202个,
∴方程f(x)=0在闭区间[0,2013]上根的个数为404个,
同理可得,方程f(x)=0在区间[-2013,0)上根的个数为402个,
故方程f(x)=0在[-2013,2013]上的根的个数为806个,
故函数y=f(x)在[-2013,2013]上的零点个数为806个,
故选:C.
点评:本题主要考查函数零点的个数的判断,利用函数的奇偶性得到函数的周期性是解决本题的关键,综合考查函数性质的应用,属于基础题.
练习册系列答案
相关题目
若a<b<0,则下列不等式中不能成立的是( )
A、
| ||||
B、
| ||||
| C、|a|>|b| | ||||
D、(
|
某地气象台预报“本市明天有雨的概率是95%”.以下理解正确的是( )
| A、本市明天将有95%的地区有雨 |
| B、本市明天将有95%的时间有雨 |
| C、明天出行不带雨具肯定会淋雨 |
| D、明天出行不带雨具淋雨的可能性较大 |
已知函数f(x)=2x+
(x>0,a>0)在x=2处取得最小值,则a的值为( )
| a |
| x |
| A、8 | ||
| B、4 | ||
C、
| ||
| D、1 |
已知某产品的成本是4元/件,该产品的销售单价x(元)与销售量y(件)的统计数据如表:
根据图表可得回归方程
=bx+a中的b为-20,据此模型预测,当销售单件定为8.5元/件时,销售该产品所得的利润是( )
| 销售单价x(元) | 8.0 | 8.2 | 8.4 | 8.6 | 8.8 | 9.0 |
| 销售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
| y |
| A、680元 | B、360元 |
| C、367元 | D、365元 |
设集合M={x|x=
+
,k∈Z},N={x|x=kπ±
,k∈Z},则M、N的关系是( )
| kπ |
| 2 |
| π |
| 4 |
| π |
| 4 |
| A、M=N | B、M≠N |
| C、M?N | D、M?N |
已知F1,F2是双曲线
-
=1(a>0,b>0)的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果∠PF2Q=90°,则双曲线的离心率( )
| x2 |
| a2 |
| y2 |
| b2 |
A、2
| ||
B、1+
| ||
C、1+
| ||
D、2+2
|
已知f(x)为偶函数,f(2)+f(-5)=4,求f(-2)+f(5)=( )
| A、4 | B、-4 | C、2 | D、-5 |