函数y=x2cos2x的导数为( )
| A、y′=2xcos2x-x2sin2x |
| B、y′=2xcos2x-2x2sin2x |
| C、y′=x2cos2x-2xsin2x |
| D、y′=2xcos2x+2x2sin2x |
在正方体ABCD-A1B1C1D1中,结合各棱长的中点和8个顶点,在这20个点中,任取两点构成的直线中与直线BD1
垂直的条数是( )
垂直的条数是( )
| A、18 | B、21 | C、27 | D、36 |
已知等差数列{an}的公差为2,若a3是a1与a4的等比中项,则a2=( )
| A、-4 | B、-6 | C、-8 | D、-10 |
函数f(x)=lgx+2x-6的零点的个数为( )个.
| A、0 | B、1 | C、2 | D、3 |
设全集I={1,2,3,4,5,6},集合A,B都是I的子集,若A∩B={1,3,5},则称A,B为“理想配集”,记作(A,B),问这样的“理想配集”(A,B)共有( )
| A、7个 | B、8个 |
| C、27个 | D、28个 |
已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f′(x)≥0,则a=f(
),b=f(
),c=f(
)的大小关系是( )
| 98 |
| 19 |
| 101 |
| 17 |
| 106 |
| 15 |
| A、c<b<a |
| B、c<a<b |
| C、a<c<b |
| D、a<b<c |
下面命题正确的个数是( )
(1)若直线l上有无数个点不在平面α内,则l∥α;
(2)若直线l平行于平面α内的无数条直线,则l∥α;
(3)若直线l与平面α平行,则l与平面α内的任一直线平行;
(4)若直线l在平面α外,则l∥α.
(1)若直线l上有无数个点不在平面α内,则l∥α;
(2)若直线l平行于平面α内的无数条直线,则l∥α;
(3)若直线l与平面α平行,则l与平面α内的任一直线平行;
(4)若直线l在平面α外,则l∥α.
| A、0个 | B、1个 | C、2个 | D、3个 |
已知不同直线m,n和不同平面α,β,给出下列命题:
①若α∥β,m?α,则m∥β;
②若m∥n,n⊥β,m?α,则α⊥β;
③若α∥m,β∥m,则α∥β;
④若α⊥β,m∥α,则m⊥β.
其中的真命题有( )
①若α∥β,m?α,则m∥β;
②若m∥n,n⊥β,m?α,则α⊥β;
③若α∥m,β∥m,则α∥β;
④若α⊥β,m∥α,则m⊥β.
其中的真命题有( )
| A、0个 | B、1个 | C、2个 | D、3个 |
已知{an}是等差数列,Sn为其前n项和,若S23=S4000,O为坐标原点,P(1,a1),Q(2012,a2012),则
•
=( )
| OP |
| OQ |
| A、2012 | B、-2012 |
| C、0 | D、1 |