(文科)在空间四边形SABC中,G是底面三角形ABC的重心,M是棱SA上的一点,若MG∥平面SBC,则SM:MA=( )
| A、1:1 | B、2:1 |
| C、1:2 | D、2:3 |
| π |
| 2 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
已知函数f(x)=(x-a)2+(
-a)2-a2+2(x>0,a∈R),若函数f(x)有四个不同的零点,则a的取值范围是( )
| 2 |
| x |
A、-3
| ||||
B、a>3
| ||||
C、2
| ||||
D、a>2
|
设函数f(x)=
,其中[x]表示不超过x的最大整数,如[-1.6]=-2,[1]=1,[1.2]=1,若直线y=kx+1(k<0)与函数y=f(x)的图象恰有2个不同的交点,则k的取值范围是( )
|
A、[-
| ||||
B、[-1,-
| ||||
C、(-1,-
| ||||
D、(-
|
已知f(x)=
,若f(a)=10,则a的值为( )
|
| A、-1 | B、1 | C、-3 | D、3 |
已知在△ABC中,
=2
,
=2
,若
=m
+n
,则m+n=( )
| AR |
| RB |
| CP |
| PR |
| AP |
| AB |
| AC |
| A、1 | ||
B、
| ||
C、
| ||
D、
|
设a=0.60.4,b=0.40.6,c=0.40.4,则a,b,c的大小关系是( )
| A、c>a>b |
| B、a>b>c |
| C、a>c>b |
| D、b>c>a |
若向量
,
是一组基底,向量
=x
+y
(x,y∈R),则称(x,y)为向量
在基底
,
下的坐标.现已知向量
在基底
=(1,2),
=(-1,1)下的坐标为(-1,-3),则向量
在另一组基底
=(1,-1),
=(0,-1)下的坐标为( )
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| t |
| p |
| q |
| t |
| m |
| n |
| A、(-1,-3) |
| B、(2,-3) |
| C、(2,-5) |
| D、(2,3) |
| A、{0} | B、{2} |
| C、{4} | D、{2,4} |