题目内容
设a=0.60.4,b=0.40.6,c=0.40.4,则a,b,c的大小关系是( )
| A、c>a>b |
| B、a>b>c |
| C、a>c>b |
| D、b>c>a |
考点:指数函数的图像与性质
专题:函数的性质及应用
分析:根据指数函数幂函数的单调性和取值范围进行比较即可
解答:
解:∵指数函数y=0.4x,为减函数,
∴0.40.6<0.40.4,
即b<c,
∵幂函数y=x0.4,为增函数,
∴0.60.4>0.40.4
即a>c,
∴a>c>b.
故选:C.
∴0.40.6<0.40.4,
即b<c,
∵幂函数y=x0.4,为增函数,
∴0.60.4>0.40.4
即a>c,
∴a>c>b.
故选:C.
点评:本题主要考查指数幂的大小比较,利用指数函数和幂函数的单调性和指数函数的图象是解决本题的关键.
练习册系列答案
相关题目
方程log
x=2x-2013的实数根的个数为( )
| 1 |
| 2 |
| A、0 | B、1 | C、2 | D、不确定 |
已知数列{an}和{bn},满足ak+1=ak+bk,k=1,2,3,….若存在正整数N,使得aN=a1成立,则称数列{an}为N阶“还原”数列.下列条件:
①|bk|=1;
②|bk|=k;
③|bk|=2k,
可能使数列{an}为8阶“还原”数列的是( )
①|bk|=1;
②|bk|=k;
③|bk|=2k,
可能使数列{an}为8阶“还原”数列的是( )
| A、① | B、①② | C、② | D、②③ |
用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;
②所以一个三角形中不能有两个直角;
③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°.
正确顺序的序号为( )
①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;
②所以一个三角形中不能有两个直角;
③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°.
正确顺序的序号为( )
| A、①②③ | B、③①② |
| C、①③② | D、②③① |
设f(x)=
,则
f(x)dx=( )
|
| ∫ | 2 -1 |
A、
| ||
B、
| ||
C、
| ||
D、
|
| π |
| 2 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
“关于x的不等式x+
>a在区间[
,2]内至少有一个解”是“a<2”的( )
| 1 |
| x |
| 1 |
| 2 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知f(x)=x3+x,在[a,b]上满足f(a)•f(b)<0,则方程f(x)=0在(a,b)上( )
| A、有唯一解 | B、至少有一解 |
| C、至多有一解 | D、无解 |