已知单位向量
,
满足|
-k
|=λ|k
+
|,其中k>0,记函数f(λ)=
•
,1≤λ≤
,当f(λ)取得最小值时,与向量
垂直的向量可以是( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| 3 |
| b |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则a的所有可能取值构成的集合为( )
| A、{-1,0} |
| B、{-2,-1,0} |
| C、{0} |
| D、{-2,0} |
函数f(x)=|x2-2|-lgx的零点个数有( )个.
| A、1 | B、2 | C、3 | D、无数个 |
函数f(x)=x+2cosx在区间[0,
]上取最小值时,x的值为( )
| π |
| 2 |
| A、0 | ||
B、
| ||
C、
| ||
D、
|
直线y-kx-1=0(k∈R)与椭圆
+
=1恒有公共点,则b的取值范围是( )
| x2 |
| 5 |
| y2 |
| b |
| A、(0,1) |
| B、(0,5) |
| C、[1,5)∪(5,+∞) |
| D、(1,+∞) |
若xlog23=1,则9x+27x的值是( )
| A、6 | B、10 | C、12 | D、15 |
若关于x的方程x2-x-(m+1)=0在[-1,1]上有解,则m的取值范围是( )
| A、-1≤m≤1 | ||
B、m≥-
| ||
| C、m≤1 | ||
D、-
|
方程x3+3x-3=0的解在区间( )
| A、(-1,0) |
| B、(0,1) |
| C、(1,2) |
| D、(2,3) |
已知f′(x)是函数f(x)=x3+ax2+(a-6)x(a∈R)的导函数,若f′(x)满足f′(x+1)=f′(1-x),则以下结论正确的是( )
| A、函数f(x)的极大值为0 |
| B、函数f(x)的极小值为5 |
| C、函数f(x)的极大值为27 |
| D、函数f(x)的极小值为-27 |