已知cosα=-
,则tanα=( )
| 3 |
| 5 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、
|
下列说法中正确的是( )
| A、第一象限角一定不是负角 |
| B、-831°是第四象限角 |
| C、钝角一定是第二象限角 |
| D、终边与始边均相同的角一定相等 |
定义在R上的函数f(x)=mx2+2x+n的值域是[0,+∞),又对满足前面要求的任意实数m,n都有不等式
+
≥
恒成立,则实数a的最大值为( )
| n |
| m2+1 |
| m |
| n2+1 |
| a |
| 2013 |
| A、2013 | ||
| B、1 | ||
C、
| ||
D、
|
已知点(-1,-1)在直线ax+by+2=0(a>0,b>0)上,则
+
的最小值为( )
| 1 |
| a |
| 1 |
| b |
| A、1 | B、2 | C、3 | D、4 |
“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”以上推理的大前提是( )
| A、矩形都是四边形 |
| B、四边形的对角线都相等 |
| C、矩形都是对角线相等的四边形 |
| D、对角线都相等的四边形是矩形 |
集合M={-2,0,1},N={1,2,3,4,5},映射f:M→N,使得对任意x∈M,都有x+f(x)+xf(x)是奇数,则这样的映射共有( )
| A、60个 | B、45个 |
| C、27个 | D、11个 |
若复数z=
(i是虚数单位)为纯虚数,则实数a的值为( )
| 1-a2i |
| i |
| A、a=1 | B、a=-1 |
| C、a=0 | D、a=±l |
已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的体积为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知向量
=(-2,1),
=(1,m),且
⊥
,则m等于( )
| a |
| b |
| a |
| b |
| A、2 | ||
B、
| ||
| C、-2 | ||
D、-
|
甲、乙等5人站成一排,其中甲、乙不相邻的不同排法共有( )
| A、144种 | B、72种 |
| C、36 种 | D、12种 |