题目内容
已知向量
=(-2,1),
=(1,m),且
⊥
,则m等于( )
| a |
| b |
| a |
| b |
| A、2 | ||
B、
| ||
| C、-2 | ||
D、-
|
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量垂直,则它们的数量积为0建立m的方程解之.
解答:
解:∵向量
=(-2,1),
=(1,m),且
⊥
,
∴
•
=0,
∴
•
=-2+m=0,
解得m=2;
故选A.
| a |
| b |
| a |
| b |
∴
| a |
| b |
∴
| a |
| b |
解得m=2;
故选A.
点评:本题考查了向量的数量积的坐标运算以及向量垂直的性质.
练习册系列答案
相关题目
在区间[0,10]中任意取一个数,则它与4之和大于10的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
“a2≥12”是“f(x)=x3-ax2+4x-8有极值”的( )
| A、充分而非必要条件 |
| B、充要条件 |
| C、必要而非充分条件 |
| D、既非充分又非必要条件 |
某5个同学进行投篮比赛,已知每个同学投篮命中率为0.8,每个同学投篮2次,且投篮之间和同学之间都没有影响.现规定:投中两个得100分,投中一个得50分,一个未中得0分,记X为5个同学的得分总和,则X的数学期望为( )
| A、400 | B、200 |
| C、100 | D、80 |
已知曲线y=
x2-2上一点P(1,-
),则过点P的切线的方程是( )
| 1 |
| 2 |
| 3 |
| 2 |
| A、2x-2y-5=0 |
| B、2x+y+1=0 |
| C、2x-2y+5=0 |
| D、2x-y+1=0 |
已知点(-1,-1)在直线ax+by+2=0(a>0,b>0)上,则
+
的最小值为( )
| 1 |
| a |
| 1 |
| b |
| A、1 | B、2 | C、3 | D、4 |
欲得到函数y=cosx的图象,须将函数y=3cos2x的图象上各点( )
| A、横坐标伸长到原来的2倍,纵坐标伸长到原来的3倍 | ||||
B、横坐标缩短到原来的
| ||||
C、横坐标伸长到原来的2倍,纵坐标缩短到原来的
| ||||
D、横坐标缩短到原来的
|
若
(2x+
)dx=3+ln2,则a的值是( )
| ∫ | a 1 |
| 1 |
| x |
| A、-2 | B、4 | C、-2或2 | D、2 |
下列向量组中能作为表示它们所在平面内所有向量的基底的是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|