定义域为(-∞,1)∪(1,+∞)的函数y=f(x)满足f(x)=f(2-x),(x-1)f′(x)>0.若x1+x2>2且x1<x2,则( )
| A、f(x1)<f(x2) |
| B、f(x1)>f(x2) |
| C、f(x1)=f(x2) |
| D、f(x1),f(x2)大小不确定 |
已知平面
=(2,1),且
⊥
,则|
|=|
|,则
的坐标为( )
| a |
| a |
| b |
| a |
| b |
| b |
| A、(-1,-2) |
| B、( 1,-2) |
| C、(-1,2) |
| D、(1,-2)或(-1,2) |
已知向量
=(1,0),
=(x,
),设
,
的夹角为θ,则cosθ的值域为( )
| a |
| b |
| 3-(x-2)2 |
| a |
| b |
A、[
| ||||
B、[0,
| ||||
C、[0,
| ||||
D、[
|
在△ABC中,a=5,b=8,C=60°,则
•
的值为( )
| BC |
| CA |
| A、-20 | ||
| B、20 | ||
C、20
| ||
D、-20
|