由无理数引发的数学危机已知延续带19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴金德分割.试判断,对于任一戴金德分割(M,N),下列选项中不可能恒成立的是( )
| A、M没有最大元素,N有一个最小元素 |
| B、M没有最大元素,N也没有最小元素 |
| C、M有一个最大元素,N有一个最小元素 |
| D、M有一个最大元素,N没有最小元素 |
若函数f(x)=
是R上的增函数,则实数a的取值范围为( )
|
| A、(1,+∞) |
| B、(1,8) |
| C、[4,8) |
| D、(4,8) |
已知x,y为正实数,则下列各关系式正确的是( )
| A、2lgx+lgy=2lgx+2lgy |
| B、2lg(x+y)=2lgx•2lgy |
| C、2lgx•lgy=2lgx+2lgy |
| D、2lg(xy)=2lgx•2lgy |