直线l1、l2的方向向量分别为
=(1,2,-2),
=(-2,3,2),则( )
| a |
| b |
| A、l1∥l2 |
| B、l1与l2相交,但不垂直 |
| C、l1⊥l2 |
| D、不能确定 |
已知
=(x,2,0),
=(3,2-x,x),且
与
的夹角为钝角,则x的取值范围是( )
| a |
| b |
| a |
| b |
| A、x<-4 | B、-4<x<0 |
| C、0<x<4 | D、x>4 |
已知曲线C的极坐标方程为:ρ2-2
ρcos(θ+
)-2=0,直线l的参数方程为
(t为参数).
(1)化曲线C,直线l的方程为直角坐标方程;
(2)求曲线C截直线l所得的弦长.
| 2 |
| π |
| 4 |
|
(1)化曲线C,直线l的方程为直角坐标方程;
(2)求曲线C截直线l所得的弦长.
函数g(x)=x2-4x+9在[-2,0]上的最小值为( )
| A、5 | B、9 | C、21 | D、6 |