用反证法证明“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数解,那么a、b、c中至少有一个偶数”时,下列假设正确的是( )
| A、假设a、b、c都是偶数 |
| B、假设a、b、c都不是偶数 |
| C、假设a、b、c至少有一个奇数 |
| D、假设a、b、c至多有一个偶数 |
已知函数f(x)=xsinx,当x1,x2∈(-
,
)时,f(x1)<f(x2),则x1,x2的关系是( )
| π |
| 2 |
| π |
| 2 |
| A、x1>x2 |
| B、x1+x2=0 |
| C、x1<x2 |
| D、x12<x22 |