题目内容
已知函数f(x)的导函数为f′(x),f′(x)没有零点且图象是连续不断的曲线,又f(x-2012)的图象关于点(2012,0)对称.若函数定义域内的三个值a、b、c足(a+b)(b+c)>0,(a+b)(c+a)>0,则f(a)+f(b)+f(c)的值( )
| A、大于零 | B、小于零 |
| C、等于零 | D、正负都有可能 |
考点:导数的运算
专题:函数的性质及应用,导数的综合应用
分析:由f(x-2012)的图象关于点(2012,0)对称,得到f(x)的图象关于(0,0)对称,即函数f(x)为奇函数,由f′(x)没有零点且图象是连续不断的曲线,得到函数是单调函数,由(a+b)(b+c)>0,(a+b)(c+a)>0,得到a+b>0,b+c>0,c+a>0或a+b<0,b+c<0,c+a>0,将每种情况的三个不等式变形,利用函数的单调性及奇函数得到不等式,从而得到f(a)+f(b)+f(c)的符号.
解答:
解:∵f(x-2012)的图象关于点(2012,0)对称.
∴f(x)的图象关于(0,0)对称,即函数f(x)为奇函数.
又f′(x)没有零点且图象是连续不断的曲线,
∴函数f(x)是单调函数,且恒增或恒减.
由(a+b)(b+c)>0,(a+b)(c+a)>0,得
a+b>0,b+c>0,c+a>0或a+b<0,b+c<0,c+a>0.
若a+b>0,b+c>0,c+a>0,且f(x)为增函数,
∵a+b>0,
∴a>-b,
∴f(a)>f(-b),即f(a)+f(b)>0,
同理有f(b)+f(c)>0,f(c)+f(a)>0.
∴f(a)+f(b)+f(c)>0;
若a+b>0,b+c>0,c+a>0,且f(x)为减函数,
∵a+b>0,
∴a>-b,
∴f(a)<f(-b),即f(a)+f(b)<0,
同理有f(b)+f(c)<0,f(c)+f(a)<0.
∴f(a)+f(b)+f(c)<0.
对于a+b<0,b+c<0,c+a>0同样分析.
∴f(a)+f(b)+f(c)的值正负都有可能.
故选:D.
∴f(x)的图象关于(0,0)对称,即函数f(x)为奇函数.
又f′(x)没有零点且图象是连续不断的曲线,
∴函数f(x)是单调函数,且恒增或恒减.
由(a+b)(b+c)>0,(a+b)(c+a)>0,得
a+b>0,b+c>0,c+a>0或a+b<0,b+c<0,c+a>0.
若a+b>0,b+c>0,c+a>0,且f(x)为增函数,
∵a+b>0,
∴a>-b,
∴f(a)>f(-b),即f(a)+f(b)>0,
同理有f(b)+f(c)>0,f(c)+f(a)>0.
∴f(a)+f(b)+f(c)>0;
若a+b>0,b+c>0,c+a>0,且f(x)为减函数,
∵a+b>0,
∴a>-b,
∴f(a)<f(-b),即f(a)+f(b)<0,
同理有f(b)+f(c)<0,f(c)+f(a)<0.
∴f(a)+f(b)+f(c)<0.
对于a+b<0,b+c<0,c+a>0同样分析.
∴f(a)+f(b)+f(c)的值正负都有可能.
故选:D.
点评:利用导函数判断函数的单调性根据是导函数大于0函数单调递增;导函数小于0,函数单调递减;判断函数的奇偶性,应该先求出函数的定义域,判断定义域是否关于原点对称.是中档题.
练习册系列答案
相关题目
在△ABC中,a,b,c分别是角A,B,C的对边,若A=
,b=2
,△ABC的面积为2,则a的值为( )
| π |
| 4 |
| 2 |
A、2
| ||
B、
| ||
| C、2 | ||
D、2
|
已知二次不等式ax2+bx+1>0的解集为{x|-2<x<1},则a,b的值为( )
| A、a=-1,b=-2 | ||
| B、a=-2,b=-1 | ||
C、a=b=-
| ||
| D、a=1,b=2 |
已知O是坐标原点,点M(-1,1),若点N(x,y)为平面区域
上的一个动点,则
•
的取值范围是( )
|
| OM |
| ON |
| A、[-1,0] |
| B、[0,1] |
| C、[0,2] |
| D、[-1,2] |
定义集合A与B的运算“*”为:A*B={x|x∈A或x∈B,但x∉A∩B},按此定义,(X*Y)*Y=( )
| A、X | B、Y | C、X∩Y | D、X∪Y |
已知g(x)=1-2x,f(g(x))=
,则f(10)等于( )
| x2-1 |
| x2+1 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f(8x-16)的解集为( )
| A、(0,+∞) | ||
| B、(0,2) | ||
C、(0,
| ||
D、(2,
|