题目内容

设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,则f(
23π
6
)=
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(
23π
6
)=f(
17π
6
)+sin
17π
6
=f(
11π
6
)+sin
11π
6
+sin
17π
6
=f(
6
)+sin
6
+sin
11π
6
+sin
17π
6
,由此能求出结果.
解答: 解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,
当0≤x<π时,f(x)=0,
∴f(
23π
6
)=f(
17π
6
)+sin
17π
6

=f(
11π
6
)+sin
11π
6
+sin
17π
6

=f(
6
)+sin
6
+sin
11π
6
+sin
17π
6

=0+
1
2
-
1
2
+
1
2

=
1
2

故答案为:
1
2
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网