题目内容
设f1(x)=cosx,定义fn+1(x)为fn(x)的导数,即fn+1(x)=fn′(x),n∈N+,若△ABC的内角A满足f1(A)+f2(A)+…+f2014(A)=0,则sinA的值是( )
| A、1 | ||||
B、
| ||||
C、
| ||||
D、
|
考点:导数的运算
专题:导数的综合应用
分析:由已知分别求出f2(x),f3(x),f4(x),f5(x),得到从第五项开始,fn(x)的解析式重复出现,每4次一循环,再结合f1(A)+f2(A)+…+f2013(A)+f2014(A)=0得到cosA-sinA=0,则A可求.
解答:
解:∵f1(x)=cosx,
∴f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,
f4(x)=f3′(x)=sinx,
f5(x)=f4′(x)=cosx,
…
从第五项开始,fn(x)的解析式重复出现,每4次一循环.
∴f1(x)+f2(x)+f3(x)+f4(x)=0
∴f2013(x)=f4×503+1(x)=f1(x)=cosx,
f2014(x)=)=f4×503+2(x)=f2(x)=-sinx,
∵f1(A)+f2(A)+…+f2013(A)+f2014(A)=0,
∴cosA-sinA=0,
∵A为三角形的内角
∴sinA=
.
故选:C.
∴f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,
f4(x)=f3′(x)=sinx,
f5(x)=f4′(x)=cosx,
…
从第五项开始,fn(x)的解析式重复出现,每4次一循环.
∴f1(x)+f2(x)+f3(x)+f4(x)=0
∴f2013(x)=f4×503+1(x)=f1(x)=cosx,
f2014(x)=)=f4×503+2(x)=f2(x)=-sinx,
∵f1(A)+f2(A)+…+f2013(A)+f2014(A)=0,
∴cosA-sinA=0,
∵A为三角形的内角
∴sinA=
| ||
| 2 |
故选:C.
点评:本题考查了导数的运算,考查了基本初等函数的导数公式,关键是规律的发现.是中档题.
练习册系列答案
相关题目
已知函数f(x)=
,则“-
≤a≤0”是“f(x)在R上单调递增”的( )
|
| 1 |
| 2 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |