题目内容
| 1 |
| 12+2 |
| 1 |
| 22+4 |
| 1 |
| 32+6 |
| 1 |
| n2+2n |
| 3 |
| 4 |
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:利用裂项法求和,即可得出结论.
解答:
解:
=
=
(
-
),
∴
+
+
+…+
=
(1-
+
-
+…+
-
)=
(1+
-
-
)=
-
,
故答案为:
.
| 1 |
| n2+2n |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| 1 |
| 12+2 |
| 1 |
| 22+4 |
| 1 |
| 32+6 |
| 1 |
| n2+2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 4 |
| n+1 |
| n(n+2) |
故答案为:
| n+1 |
| n(n+2) |
点评:本题考查数列的求和,正确运用裂项法是关键.
练习册系列答案
相关题目