题目内容
数列
,
,
,
,…,
的前n项和为 .
| 3 |
| 2 |
| 9 |
| 4 |
| 25 |
| 8 |
| 65 |
| 16 |
| n•2n+1 |
| 2n |
考点:数列的求和
专题:等差数列与等比数列
分析:把数列的通项分解为
=n+
,分组后利用等差数列和等比数列的前n项和得答案.
| n•2n+1 |
| 2n |
| 1 |
| 2n |
解答:
解:∵
=n+
.
∴数列
,
,
,
,…,
的前n项和:
Sn=
+
+
+
+…+
=(1+
)+(2+
)+…+(n+
)
=(1+2+…+n)+(
+
+…+
)
=
+
=
+1-
=
-
.
故答案为:
-
.
| n•2n+1 |
| 2n |
| 1 |
| 2n |
∴数列
| 3 |
| 2 |
| 9 |
| 4 |
| 25 |
| 8 |
| 65 |
| 16 |
| n•2n+1 |
| 2n |
Sn=
| 3 |
| 2 |
| 9 |
| 4 |
| 25 |
| 8 |
| 65 |
| 16 |
| n•2n+1 |
| 2n |
=(1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
=(1+2+…+n)+(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
=
| (1+n)n |
| 2 |
| ||||
1-
|
| n2+n |
| 2 |
| 1 |
| 2n |
=
| n2+n-2 |
| 2 |
| 1 |
| 2n |
故答案为:
| n2+n-2 |
| 2 |
| 1 |
| 2n |
点评:本题考查了数列的分组求和,考查了等差数列和等比数列的前n项和,是中档题.
练习册系列答案
相关题目