题目内容
4.A、B、C、D、E、F六人并排站成一排,如果A、B必须相邻且B在A的左边,那么不同的排法种数为( )| A. | 720 | B. | 240 | C. | 120 | D. | 60 |
分析 根据题意,A、B必须相邻且B在A的右边,视A、B为一个元素,且只有一种排法;将A、B与其他4个元素,共5个元素排列,由乘法计数原理可得答案.
解答 解:根据题意,分2步进行分析:
①、A、B必须相邻且B在A的右边,视A、B为一个元素,且只有一种排法;
②、将A、B与其他4个元素,共5个元素全排列,
即A55=120种排法,
则符合条件的排法有1×120=120种;
故选:C.
点评 本题考查排列的运用,注意分析相邻问题时,要用捆绑法.
练习册系列答案
相关题目
15.若α∈(0,2π),则符合不等式sinα>cosα的α取值范围是( )
| A. | ($\frac{π}{4}$,$\frac{5π}{4}$) | B. | ($\frac{π}{2}$,π) | C. | ($\frac{π}{4}$,$\frac{π}{2}$) | D. | ($\frac{π}{4}$,$\frac{π}{2}$)∪(π,$\frac{3π}{4}$) |
19.在△ABC中,$A=\frac{π}{3},AC=4,BC=2\sqrt{3}$,则△ABC的面积为( )
| A. | 2 | B. | $2\sqrt{3}$ | C. | 4 | D. | $4\sqrt{3}$ |
9.
执行如图所示的程序框图,若程序运行中输出的一个数组是(x,-10),则数组中的x=( )
| A. | 64 | B. | 32 | C. | 16 | D. | 8 |
16.2017年某市街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:
(Ⅰ)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系:
(Ⅱ)若对年龄在[15,20)的被调查人中随机选取两人,对年龄在[20,25)的被调查人中随机选取一人进行调查,求选中的3人中支持发展共享单车的人数为2人的概率.
参考数据:
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 年龄 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
| 受访人数 | 5 | 6 | 15 | 9 | 10 | 5 |
| 支持发展共享单车人数 | 4 | 5 | 12 | 9 | 7 | 3 |
| 年龄低于35岁 | 年龄不低于35岁 | 合计 | |
| 支持 | |||
| 不支持 | |||
| 合计 |
参考数据:
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
14.已知等差数列{an},S3=6,a9+a11+a13=60,则S13的值为( )
| A. | 66 | B. | 42 | C. | 169 | D. | 156 |