题目内容

已知函数f(x)=x2+ax+1(a∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为
 
考点:二次函数的性质
专题:函数的性质及应用,不等式的解法及应用
分析:由于关于x的不等式x2+ax+6<c的解为m<x<m+6,利用根与系数的关系即可得解.
解答: 解:若关于x的不等式x2+ax+6<c的解为m<x<m+6,
∴2m+6=-a,m(m+6)=6-c,
∴c=6-m(m+6)=6+
6+a
2
=15-
a2
4
=9.
则实数c的值是9.
故答案为:9.
点评:本题考查了二次函数的图象与性质、一元二次不等式的解法、一元二次方程的根与系数的关系,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网