题目内容

9.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≥2\\ 2x+y≤4\\ y≤2\end{array}\right.$则目标函数z=3x-y的最大值(  )
A.6B.$\frac{3}{2}$C.-1D.$-\frac{3}{2}$

分析 先根据约束条件画出可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数z=3x-y的最大值.

解答 解:画出满足条件的平面区域,如图示:

由z=3x-y得y=3x-z,
显然直线过(2,0)时z最大,
z的最大值是:6,
故选:A.

点评 本题考查了简单线性规划问题,首先正确画出平面区域,然后根据目标函数的几何意义求最值.也可以利用“角点法”解之.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网