题目内容
3.执行如所示程序框图所表达的算法,输出的结果是 ( )| A. | 80 | B. | 99 | C. | 116 | D. | 120 |
分析 由图知,每次进入循环体后,新的s值是s加上2n+1得到的,故由此运算规律进行计算,经过8次运算后输出的结果即可.
解答 解:由图知s的运算规则是:s=s+(2n+1),故有:
第一次进入循环体后s=3,n=2,
第二次进入循环体后s=3+5,n=3,
第三次进入循环体后s=3+5+7,n=4,
第四次进入循环体后s=3+5+7+9,n=5,
…
第10次进入循环体后s=3+5+7+9+…+17,n=9.
由于n=9>8,退出循环.
故该程序运行后输出的结果是:s=3+5+7+9+…+17=80.
故选:A.
点评 本题考查循环结构,已知运算规则与运算次数,求最后运算结果的一个题,是算法中一种常见的题型,属于基础题.
练习册系列答案
相关题目
13.经过点P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段没有公共点,则直线l的斜率k与倾斜角α的取值范围分别是( )
| A. | (-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{3π}{4}$) | B. | (-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$) | ||
| C. | (-1,1),[$\frac{π}{4}$,$\frac{3π}{4}$] | D. | (-1,1),[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,0) |
14.幂函数y=x3在[1,2]上的最大值与最小值之和为( )
| A. | 10 | B. | 9 | C. | 8 | D. | 6 |
11.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=( )
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 4 |
18.若a为实数,且$\frac{2-ai}{1+i}=3+i$,则a=( )
| A. | -4 | B. | -3 | C. | 3 | D. | 4 |
8.执行如图所示的程序框图,输出S的值是( )

| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
12.算法程序框图如图所示,若$a=\frac{π}{2}$,$b={3^{\frac{1}{3}}}$,$c={({\sqrt{e}})^{ln3}}$,则输出的结果是( )
| A. | $\frac{a+b+c}{3}$ | B. | a | C. | b | D. | c |
13.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{1+9{x}^{2},}}&{x≤0}\\{1+x{e}^{x-1},}&{x>0}\end{array}\right.$,点A、B是函数f(x)图象上不同两点,则∠AOB(O为坐标原点)的取值范围是( )
| A. | (0,$\frac{π}{4}$) | B. | (0,$\frac{π}{4}$] | C. | (0,$\frac{π}{3}$) | D. | (0,$\frac{π}{3}$] |