题目内容
12.算法程序框图如图所示,若$a=\frac{π}{2}$,$b={3^{\frac{1}{3}}}$,$c={({\sqrt{e}})^{ln3}}$,则输出的结果是( )| A. | $\frac{a+b+c}{3}$ | B. | a | C. | b | D. | c |
分析 模拟执行程序,可得程序算法的功能是求a,b,c三个数中的最大数,比较a、b、c三数的大小,可得答案.
解答 解:由程序框图知:算法的功能是求a,b,c三个数中的最大数,
∵a3=$\frac{{π}^{3}}{8}$>3=b3>0,
∴a>b;
又c=($\sqrt{e}$)ln3=e${\;}^{\frac{1}{2}ln3}$=e${\;}^{ln\sqrt{3}}$=$\sqrt{3}$>$\frac{π}{2}$=a.
∴输出的结果为c.
故选:D.
点评 本题考查了选择结构的程序框图,根据框图的流程判断算法的功能是解答此类问题的关键,属于基础题.
练习册系列答案
相关题目
2.某初级中学有学生111人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段 如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是( )
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是( )
| A. | ②、③都不能为系统抽样 | B. | ②、④都不能为分层抽样 | ||
| C. | ①、③都可能为分层抽样 | D. | ①、④都可能为系统抽样 |
3.执行如所示程序框图所表达的算法,输出的结果是 ( )

| A. | 80 | B. | 99 | C. | 116 | D. | 120 |
20.函数f(x)=cos(ωx+φ)的部分图象如图所示,则下列结论成立的是( )

| A. | f(x)的递增区间是(2kπ-$\frac{5π}{12}$,2kπ+$\frac{π}{12}$),k∈Z | |
| B. | 函数f(x-$\frac{π}{3}$)是奇函数 | |
| C. | 函数f(x-$\frac{π}{12}$)是偶函数 | |
| D. | f(x)=cos(2x-$\frac{π}{6}$) |
17.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|\\;0<x<3}\\{sin(\frac{π}{6}x)\\;3≤x≤15}\end{array}\right.$,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4取值范围是( )
| A. | (60,96) | B. | (45,72) | C. | (30,48) | D. | (15,24) |
1.在长为2的线段AB上任意取一点C,以线段AC为半径的圆面积小于π的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{π}{4}$ |