题目内容

18.已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

分析 (1)设{an}为公差为d的等差数列,由条件运用等差数列的通项公式可得方程,解方程可得首项和公差,即可得到所求通项;
(2)求出${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),由数列的求和方法:裂项相消求和,计算即可得到所求和.

解答 解:(1)设{an}为公差为d的等差数列,
由a1+a3=8,a2+a4=12,
可得2a1+2d=8,2a1+4d=12,
解得a1=d=2,
即有an=a1+(n-1)d=2n,n∈N*;
(2)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
数列{bn}的前n项和为$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4(n+1)}$.

点评 本题考查等差数列的通项公式的运用,以及数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网