题目内容
17.下列不等式中,正确的是( )| A. | tan$\frac{4π}{7}$>tan$\frac{3π}{7}$ | B. | tan$\frac{2π}{5}$<tan$\frac{3π}{5}$ | ||
| C. | tan(-$\frac{13π}{7}$)>tan(-$\frac{15π}{8}$) | D. | tan(-$\frac{13π}{4}$)<tan(-$\frac{12π}{5}$) |
分析 根据正切函数的单调性与周期性,对选项中的数值进行分析、判断即可.
解答 解:根据正切函数的单调性与周期性,得;
对于A,tan$\frac{4π}{7}$<0<tan$\frac{3π}{7}$,A错误;
对于B,tan$\frac{2π}{5}$>0>tan$\frac{3π}{5}$,B错误;
对于C,tan(-$\frac{13π}{7}$)=tan(-2π+$\frac{π}{7}$)=tan$\frac{π}{7}$,
tan(-$\frac{15π}{8}$)=tan(-2π+$\frac{π}{8}$)=tan$\frac{π}{8}$,
$\frac{π}{2}$>$\frac{π}{7}$>$\frac{π}{8}$>0,
∴tan$\frac{π}{7}$>tan$\frac{π}{8}$,C正确;
对于D,tan(-$\frac{13π}{4}$)=tan(-$\frac{π}{4}$)=-tan$\frac{π}{4}$,
tan(-$\frac{12π}{5}$)=tan(-$\frac{2π}{5}$)=-tan$\frac{2π}{5}$,
且tan$\frac{π}{4}$<tan$\frac{2π}{5}$,
∴-tan$\frac{π}{4}$>tan$\frac{2π}{5}$,D错误.
故选:C.
点评 本题考查了正切函数的单调性与周期性的应用问题,是基础题目.
练习册系列答案
相关题目
8.下列函数中,在R上为增函数的是( )
| A. | y=-2x+1 | B. | y=-$\frac{2}{x}$ | C. | y=2x | D. | y=x2 |
5.设命题p:x<-1或x>1;命题q:x<-2或x>1,则¬p是¬q的( )
| A. | 必要不充分条件 | B. | 充要条件 | ||
| C. | 充分不必要条件 | D. | 既不充分也不必要条件 |
12.两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0的公切线条数为( )
| A. | 4条 | B. | 3条 | C. | 2条 | D. | 1条 |
2.对某种品牌的灯泡进行寿命跟踪调查,统计如下:
(Ⅰ)列出频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)求灯泡寿命在100h~400h的频率.
| 寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
| 个数 | 320 | 30 | 80 | 40 | 30 |
(Ⅱ)画出频率分布直方图;
(Ⅲ)求灯泡寿命在100h~400h的频率.
9.若复数(x2-1)+(x+1)i为纯虚数,则实数x的值为( )
| A. | 1 | B. | -1 | C. | 1或-1 | D. | 不存在 |
6.某商店销售额和利润额如表:
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(百万元) | 2 | 3 | 3 | 4 | 5 |
(2)计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
7.
如图,在平行六面体ABCD-A1B1C1D1中,已知$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{A{A_1}}=\overrightarrow c$,则用向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$可表示向量$\overrightarrow{B{D_1}}$等于( )
| A. | $\overrightarrow a+\overrightarrow b+\overrightarrow c$ | B. | $\overrightarrow a-\overrightarrow b+\overrightarrow c$ | C. | $\overrightarrow a+\overrightarrow b-\overrightarrow c$ | D. | $-\overrightarrow a+\overrightarrow b+\overrightarrow c$ |