题目内容

15.已知cosθ=-$\frac{3}{5}$,且180°<θ<270°,求tan$\frac{θ}{2}$的值.

分析 根据二倍角公式和同角的三角函数的关系即可求出.

解答 解:∵180°<θ<270°,
∴90°<$\frac{θ}{2}$<135°,
∵cosθ=-$\frac{3}{5}$=1-2sin2$\frac{θ}{2}$=2cos2$\frac{θ}{2}$-1,
∴sin$\frac{θ}{2}$=$\frac{2\sqrt{5}}{5}$,cos$\frac{θ}{2}$=-$\frac{\sqrt{5}}{5}$,
∴tan$\frac{θ}{2}$=$\frac{sin\frac{θ}{2}}{cos\frac{θ}{2}}$=-2.

点评 本题考查了二倍角公式和同角的三角函数的关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网