题目内容

已知等差数列{an}的前n项和为Sn=n2+pn+q(p,q∈R),且a2,a3,a5成等比数列.
(1)求p,q的值;
(2)若数列{bn}满足an+log2n=log2bn,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:解法一:
(1)a1=S1=1+p+q,an=Sn-Sn-1=2n-1+p,由此求出q=0,由a2,a3,a5成等比数列,得p=-1.
(2)an=2n-2,bn=n•2an=n•22n-2=n•4n-1,由此利用错位相减法能求出数列{bn}的前n项和Tn.解法二:
(1)由Sn=n2+pn+q,得d=2,p=a1-1,q=0.由a2,a3,a5成等比数列,得p=-1.
(2)an=2n-2.bn=n•2an=n•22n-2=n•4n-1,由x+x2+x3+…+xn=
x-xn+1
1-x
(x≠1)
,两边对x取导数得,由此能求出Tn=
1
9
[(3n-1)•4n+1]
解答: (本小题满分14分)
解法一:
(1)解:当n=1时,a1=S1=1+p+q,…(1分)
当n≥2时,an=Sn-Sn-1…(2分)
=n2+pn+q-[(n-1)2+p(n-1)+q]
=2n-1+p.…(3分)
∵{an}是等差数列,
∴1+p+q=2×1-1+p,得q=0.…(4分)
又a2=3+p,a3=5+p,a5=9+p,…(5分)
∵a2,a3,a5成等比数列,
a
2
3
=a2
a
 
5
,即(5+p)2=(3+p)(9+p),…(6分)
解得p=-1.…(7分)
(2)解:由(1)得an=2n-2.…(8分)
∵an+log2n=log2bn
bn=n•2an=n•22n-2=n•4n-1.…(9分)
∴Tn=b1+b2+b3+…+bn-1+bn
=40+2×41+3×42+…+(n-1)•4n-2+n•4n-1,①…(10分)
4Tn=41+2×42+3×43+…+(n-1)•4n-1+n•4n,②…(11分)
①-②得-3Tn=40+41+42+…+4n-1-n•4n=
1-4n
1-4
-n•4n
=
(1-3n)•4n-1
3
.…(13分)
Tn=
1
9
[(3n-1)•4n+1]
.…(14分)
解法二:
(1)解:设等差数列{an}的公差为d,
Sn=na1+
n(n-1)
2
d=
d
2
n2+(a1-
d
2
)n
.…(1分)
Sn=n2+pn+q
d
2
=1
a1-
d
2
=p
,q=0.…(4分)
∴d=2,p=a1-1,q=0.
∵a2,a3,a5成等比数列,
a
2
3
=a2
a
 
5
,…(5分)
(a1+4)2=(a1+2)(a1+8)
解得a1=0.…(6分)
∴p=-1.…(7分)
(2)解:由(1)得an=2n-2.…(8分)
∵an+log2n=log2bn
bn=n•2an=n•22n-2=n•4n-1.…(9分)
∴Tn=b1+b2+b3+…+bn-1+bn
=40+2×41+3×42+…+(n-1)•4n-2+n•4n-1.…(10分)
x+x2+x3+…+xn=
x-xn+1
1-x
(x≠1)
,…(11分)
两边对x取导数得,
x0+2x1+3x2+…+nxn-1=
nxn+1-(n+1)xn+1
(1-x)2
.…(12分)
令x=4,得40+2×41+3×42+…+(n-1)•4n-2+n•4n-1=
1
9
[(3n-1)•4n+1]

Tn=
1
9
[(3n-1)•4n+1]
.…(14分)
点评:本题考查实数的求法,考查数列的前n项和的求法,解题时要注意审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网