题目内容

已知数列{an}是公比大于1的等比数列,Tn是{an}的前n项和,对任意n∈N*有an+1=Tn+
3
2
an+
1
2
,数列{bn}满足bn=
1
n
(log3a1+log3a2+…+log3an+log3t)(n∈N*).
(1)求数列{an}的通项公式;
(2)若{bn}为等差数列,求t的值及数列{
1
bn+1bn+3
}的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得an+1=
7
2
an-
3
2
an-1
,设公比为q,则q2=
7
2
q-
3
2
,由此求出an=3n-1
(2)bn=
1
n
(log3a1+log3a2+…+log3an+log3t)=
n-1
2
+
1
n
log3t
,由此能求出t=1,
1
bn+1bn+3
=
2
n
×
2
n+2
=2(
1
n
-
1
n+2
),由此能求出数列{
1
bn+1bn+3
}的前n项和Sn
解答: 解:(1)∵数列{an}是公比大于1的等比数列,
Tn是{an}的前n项和,对任意n∈N*有an+1=Tn+
3
2
an+
1
2
,①
∴n≥2时,an=Tn-1+
3
2
an-1+
1
2
,②
①-②,得an+1-an=an+
3
2
an
-
3
2
an-1

an+1=
7
2
an-
3
2
an-1

设公比为q,则a1qn=
7
2
a1qn-1-
3
2
a1qn-2

q2=
7
2
q-
3
2

解得q=
1
2
或q=3,由q>1,得q=3,
a1q=a1+
3
2
a1+
1
2
,解得a1=1,
an=3n-1
(2)bn=
1
n
(log3a1+log3a2+…+log3an+log3t)(n∈N*
=
1
n
(1+2+3+…+n-1+log3t)
=
1
n
(n-1)n
2
+
1
n
log3t

=
n-1
2
+
1
n
log3t

∵{bn}为等差数列,
∴bn-bn-1=
n-1
2
+
1
n
log3t
-
n-2
2
-
1
n-1
log3t
=
1
2
+
1
n
log3t-
1
n-1
log3t
=
1
2

∴t=1,
∴bn=
n-1
2

1
bn+1bn+3
=
2
n
×
2
n+2
=2(
1
n
-
1
n+2
),
∴Sn=2(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2

=2(1+
1
2
-
1
n+1
-
1
n+2

=2(
3
2
-
1
n+1
-
1
n+2

=3-
4n+6
(n+1)(n+2)
点评:本题考查数列{an}的通项公式的求法,考查t的值及数列{
1
bn+1bn+3
}的前n项和Sn的求法,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网