题目内容
已知数列{an}是公比大于1的等比数列,Tn是{an}的前n项和,对任意n∈N*有an+1=Tn+
an+
,数列{bn}满足bn=
(log3a1+log3a2+…+log3an+log3t)(n∈N*).
(1)求数列{an}的通项公式;
(2)若{bn}为等差数列,求t的值及数列{
}的前n项和Sn.
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
(1)求数列{an}的通项公式;
(2)若{bn}为等差数列,求t的值及数列{
| 1 |
| bn+1•bn+3 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得an+1=
an-
an-1,设公比为q,则q2=
q-
,由此求出an=3n-1.
(2)bn=
(log3a1+log3a2+…+log3an+log3t)=
+
log3t,由此能求出t=1,
=
×
=2(
-
),由此能求出数列{
}的前n项和Sn.
| 7 |
| 2 |
| 3 |
| 2 |
| 7 |
| 2 |
| 3 |
| 2 |
(2)bn=
| 1 |
| n |
| n-1 |
| 2 |
| 1 |
| n |
| 1 |
| bn+1•bn+3 |
| 2 |
| n |
| 2 |
| n+2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| bn+1•bn+3 |
解答:
解:(1)∵数列{an}是公比大于1的等比数列,
Tn是{an}的前n项和,对任意n∈N*有an+1=Tn+
an+
,①
∴n≥2时,an=Tn-1+
an-1+
,②
①-②,得an+1-an=an+
an-
an-1,
∴an+1=
an-
an-1,
设公比为q,则a1qn=
a1qn-1-
a1qn-2,
∴q2=
q-
,
解得q=
或q=3,由q>1,得q=3,
a1q=a1+
a1+
,解得a1=1,
∴an=3n-1.
(2)bn=
(log3a1+log3a2+…+log3an+log3t)(n∈N*)
=
(1+2+3+…+n-1+log3t)
=
•
+
log3t
=
+
log3t,
∵{bn}为等差数列,
∴bn-bn-1=
+
log3t-
-
log3t=
+
log3t-
log3t=
,
∴t=1,
∴bn=
,
∴
=
×
=2(
-
),
∴Sn=2(1-
+
-
+
-
+…+
-
)
=2(1+
-
-
)
=2(
-
-
)
=3-
.
Tn是{an}的前n项和,对任意n∈N*有an+1=Tn+
| 3 |
| 2 |
| 1 |
| 2 |
∴n≥2时,an=Tn-1+
| 3 |
| 2 |
| 1 |
| 2 |
①-②,得an+1-an=an+
| 3 |
| 2 |
| 3 |
| 2 |
∴an+1=
| 7 |
| 2 |
| 3 |
| 2 |
设公比为q,则a1qn=
| 7 |
| 2 |
| 3 |
| 2 |
∴q2=
| 7 |
| 2 |
| 3 |
| 2 |
解得q=
| 1 |
| 2 |
a1q=a1+
| 3 |
| 2 |
| 1 |
| 2 |
∴an=3n-1.
(2)bn=
| 1 |
| n |
=
| 1 |
| n |
=
| 1 |
| n |
| (n-1)n |
| 2 |
| 1 |
| n |
=
| n-1 |
| 2 |
| 1 |
| n |
∵{bn}为等差数列,
∴bn-bn-1=
| n-1 |
| 2 |
| 1 |
| n |
| n-2 |
| 2 |
| 1 |
| n-1 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| 2 |
∴t=1,
∴bn=
| n-1 |
| 2 |
∴
| 1 |
| bn+1•bn+3 |
| 2 |
| n |
| 2 |
| n+2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Sn=2(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=2(1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=2(
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=3-
| 4n+6 |
| (n+1)(n+2) |
点评:本题考查数列{an}的通项公式的求法,考查t的值及数列{
}的前n项和Sn的求法,解题时要注意裂项求和法的合理运用.
| 1 |
| bn+1•bn+3 |
练习册系列答案
相关题目