题目内容
已知数列{an}中,a1=4,an>0,前n项和为Sn,若an=
+
,(n∈N*,n≥2).
(l)求数列{an}的通项公式;
(2)若数列{
}前n项和为Tn,求证
≤Tn≤
.
| Sn |
| Sn-1 |
(l)求数列{an}的通项公式;
(2)若数列{
| 1 |
| anan+1 |
| 1 |
| 20 |
| 3 |
| 20 |
考点:数列与不等式的综合
专题:点列、递归数列与数学归纳法
分析:(l)根据数列的递推关系即可求数列{an}的通项公式;
(2)求出数列{
}前n项和为Tn,利用不等式的性质即可证明
≤Tn≤
.
(2)求出数列{
| 1 |
| anan+1 |
| 1 |
| 20 |
| 3 |
| 20 |
解答:
解:(1)∵an=
+
=Sn-Sn-1=(
+
)(
-
).(n∈N*,n≥2).
∴
-
=1,
即{
}是一个首项为
=
=
=2,公差d=1的等差数列,
则
=2+n-1=n+1,
则Sn=(n+1)2,
当n≥2时,an=
+
=n+1+n=2n+1,
当n=1时,a1=4不满足an,
∴数列{an}的通项公式an=
(2)若数列{
}前n项和为Tn,
则Tn=
+
+…+
=
+
+
+…+
=
+
(
-
+
-
+…+
-
)
=
+
(
-
)=
-
,
∵
≤
,
∴
≤Tn≤
.
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
∴
| Sn |
| Sn-1 |
即{
| Sn |
| S1 |
| a1 |
| 4 |
则
| Sn |
则Sn=(n+1)2,
当n≥2时,an=
| Sn |
| Sn-1 |
当n=1时,a1=4不满足an,
∴数列{an}的通项公式an=
|
(2)若数列{
| 1 |
| anan+1 |
则Tn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| 4×5 |
| 1 |
| 5×7 |
| 1 |
| 7×9 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2n+3 |
| 3 |
| 20 |
| 1 |
| 4n+6 |
∵
| 1 |
| 4n+6 |
| 1 |
| 10 |
∴
| 1 |
| 20 |
| 3 |
| 20 |
点评:本题主要考查数列的通项公式的应用,以及数列和不等式的综合应用,利用裂项法求和是解决本题的关键.
练习册系列答案
相关题目