题目内容

20.已知函数f(x)=lnx+ax2
(1)讨论f(x)的单调性;
(2)设a>1,若对任意x1,x2∈(0,+∞),恒有|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.

分析 (1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.
(2)根据第一问的单调性先对|f(x1)-f(x2)|≥4|x1-x2|进行化简整理,转化成研究g(x)=f(x)-4x在(0,+∞)单调增函数,再利用参数分离法求出a的范围.

解答 解:(1)f(x)的定义域是(0,+∞),
f′(x)=$\frac{2{ax}^{2}+1}{x}$,(x>0),
a≥0时,f′(x)>0,故f(x)在(0,+∞)递增,
a<0时,令f′(x)>0,解得:0<x<$\sqrt{-\frac{1}{2a}}$,
令f′(x)<0,解得:x>$\sqrt{-\frac{1}{2a}}$,
故函数f(x)在(0,$\sqrt{-\frac{1}{2a}}$)递增,在($\sqrt{-\frac{1}{2a}}$,+∞)递减;
(2)不妨设x1≤x2,而a>1,
由(1)得:f(x)在(0,+∞)递增,
从而对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|
等价于?x1,x2∈(0,+∞),f(x2)-4x2≥f(x1)-4x1
令g(x)=f(x)-4x,则g′(x)=$\frac{1}{x}$+2ax-4
①等价于g(x)在(0,+∞)单调递增,即$\frac{1}{x}$+2ax-4≥0.
从而2a≥$\frac{4}{x}-\frac{1}{{x}^{2}}$=$-(\frac{1}{x}-2)^{2}$+4,∴a≥2
故a的取值范围为[2,+∞).

点评 本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网