题目内容

8.已知{an}是等比数列,a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=(  )
A.16(1-4-nB.16(1-2-nC.$\frac{32}{3}(1-{4^{-n}})$D.$\frac{32}{3}(1-{2^{-n}})$

分析 先根据a2=2,a5=$\frac{1}{4}$,求出公比q,再根据{anan+1}为等比数列,根据求和公式得到答案.

解答 解:∵{an}是等比数列,a2=2,a5=a2q3=2•q3=$\frac{1}{4}$,
∴则q=$\frac{1}{2}$,a1=4,a1a2=8,
∵$\frac{{a}_{n}{a}_{n+1}}{{a}_{n-1}{a}_{n}}$=q2=$\frac{1}{4}$,
∴数列{anan+1}是以8为首项,$\frac{1}{4}$为公比的等比数列,
∴a1a2+a2a3+a3a4+…+anan+1=$\frac{8[1-(\frac{1}{4})^{n}]}{1-\frac{1}{4}}$=$\frac{32}{3}$(1-4-n).
故选:C.

点评 本题主要考查等比数列的求和问题.属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网