题目内容
F,G.
(1)求证
| EG |
| AD |
| CG |
| CD |
(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;
(3)当AB=AC时,△FDG为等腰直角三角形吗?并说明理由.
考点:相似三角形的判定
专题:立体几何
分析:(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得;
(2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论;
(3)是,利用相似三角形的性质即可求得.
(2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论;
(3)是,利用相似三角形的性质即可求得.
解答:
证明:(1)在△ADC和△EGC中,
∵∠ADC=∠EGC,∠C=∠C,
∴△ADC∽△EGC.
∴
=
.(3分)
解:(2)FD与DG垂直.(4分)
证明如下:
在四边形AFEG中,
∵∠FAG=∠AFE=∠AGE=90°,
∴四边形AFEG为矩形.
∴AF=EG.
∵
=
,
∴
=
.(6分)
又∵△ABC为直角三角形,AD⊥BC,
∴∠FAD=∠C=90°-∠DAC,
∴△AFD∽△CGD.
∴∠ADF=∠CDG.(8分)
∵∠CDG+∠ADG=90°,
∴∠ADF+∠ADG=90°.
即∠FDG=90°.
∴FD⊥DG.(10分)
(3)当AB=AC时,△FDG为等腰直角三角形,理由如下:
∵AB=AC,∠BAC=90°,
∴AD=DC.
∵△AFD∽△CGD,
∴
=
=1.
∴FD=DG.
∵∠FDG=90°,
∴△FDG为等腰直角三角形.(12分)
∵∠ADC=∠EGC,∠C=∠C,
∴△ADC∽△EGC.
∴
| EG |
| AD |
| CG |
| CD |
解:(2)FD与DG垂直.(4分)
证明如下:
在四边形AFEG中,
∵∠FAG=∠AFE=∠AGE=90°,
∴四边形AFEG为矩形.
∴AF=EG.
∵
| EG |
| AD |
| CG |
| CD |
∴
| AF |
| AD |
| CG |
| CD |
又∵△ABC为直角三角形,AD⊥BC,
∴∠FAD=∠C=90°-∠DAC,
∴△AFD∽△CGD.
∴∠ADF=∠CDG.(8分)
∵∠CDG+∠ADG=90°,
∴∠ADF+∠ADG=90°.
即∠FDG=90°.
∴FD⊥DG.(10分)
(3)当AB=AC时,△FDG为等腰直角三角形,理由如下:
∵AB=AC,∠BAC=90°,
∴AD=DC.
∵△AFD∽△CGD,
∴
| FD |
| GD |
| AD |
| DC |
∴FD=DG.
∵∠FDG=90°,
∴△FDG为等腰直角三角形.(12分)
点评:此题考查了相似三角形的判定和性质,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.相似三角形的对应边的比相等,对应角相等.
练习册系列答案
相关题目
复数z=
(i为虚数单位),则|z|等于( )
| (2-i)(1+i) |
| i |
| A、10 | ||
B、
| ||
| C、5 | ||
D、
|