题目内容

9.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D为AC的中点.
(1)求证:直线AB1∥平面BC1D;
(2)求证:平面BC1D⊥平面ACC1A1
(3)求三棱锥C-BC1D的体积.

分析 (1)连接B1C交BC1于O,连接OD,证明OD∥B1A,由线面平行的判定定理证明AB1∥平面C1BD.
(2)由线面垂直的判定定理得出BD⊥平面A1ACC1,再由面面垂直的判定定理得出平面C1BD⊥平面A1ACC1
(3)利用等体积转换,即可求三棱锥C-BC1D的体积.

解答 (1)证明:如图所示,
连接B1C交BC1于O,连接OD,
因为四边形BCC1B1是平行四边形,
所以点O为B1C的中点,
又因为D为AC的中点,
所以OD为△AB1C的中位线,
所以OD∥B1A,
又OD?平面C1BD,AB1?平面C1BD,
所以AB1∥平面C1BD.
(2)证明:因为△ABC是等边三角形,D为AC的中点,
所以BD⊥AC,
又因为AA1⊥底面ABC,
所以AA1⊥BD,
根据线面垂直的判定定理得BD⊥平面A1ACC1
又因为BD?平面C1BD,
所以平面C1BD⊥平面A1ACC1
(3)解:由(2)知,△ABC中,BD⊥AC,BD=BCsin60°=3$\sqrt{3}$,
∴S△BCD=$\frac{1}{2}$×3×3$\sqrt{3}$=$\frac{9\sqrt{3}}{2}$,
∴${V}_{C-B{C}_{1}D}$=${V}_{{C}_{1}-BCD}$=$\frac{1}{3}$•$\frac{9\sqrt{3}}{2}$•6=9$\sqrt{3}$.

点评 本题考查了空间中的平行与垂直关系的应用问题,也考查了空间想象能力与逻辑思维能力的应用问题,考查了锥体体积公式的应用,是综合性题目.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网