ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏßy2=4xµÄ½¹µãΪF2£¬µãF1ÓëF2¹ØÓÚ×ø±êÔµã¶Ô³Æ£¬Ö±Ïßm´¹Ö±ÓÚxÖᣨ´¹×ãΪT£©£¬ÓëÅ×ÎïÏß½»ÓÚ²»Í¬µÄÁ½µãP¡¢Q£¬ÇÒ
•
=-5£®
£¨¢ñ£©ÇóµãTµÄºá×ø±êx0£»
£¨¢ò£©ÈôÍÖÔ²CÒÔF1£¬F2Ϊ½¹µã£¬ÇÒF1£¬F2¼°ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£®
¢ÙÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
¢Ú¹ýµãF2×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Éè
=¦Ë
£¬Èô¦Ë¡Ê[-2£¬-1]£¬Çó|
+
|µÄȡֵ·¶Î§£®
| F1P |
| F2Q |
£¨¢ñ£©ÇóµãTµÄºá×ø±êx0£»
£¨¢ò£©ÈôÍÖÔ²CÒÔF1£¬F2Ϊ½¹µã£¬ÇÒF1£¬F2¼°ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£®
¢ÙÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
¢Ú¹ýµãF2×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Éè
| F2A |
| F2B |
| TA |
| TB |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©ÀûÓÃ
•
=-5£¬½áºÏP£¨x0£¬y0£©ÔÚÅ×ÎïÏßÉÏ£¬¼´¿ÉÇóµãTµÄºá×ø±êx0£»
£¨¢ò£©¢ÙÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
+
=1(a£¾b£¾0)£¬ÀûÓÃF1£¬F2¼°ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£¬¼´¿ÉÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
¢Ú·ÖÀàÌÖÂÛ£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃ
=¦Ë
£¬¿ÉµÃ¦Ë+
+2=
£¬Çó³ökµÄ·¶Î§£¬
=£¨x1-2£¬y1£©£¬
=£¨x2-2£¬y2£©£¬ËùÒÔ|
+
|=£¨x1+x2-4£¬y1+y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬ÓÃk±íʾ£¬¼´¿ÉÇó|
+
|µÄȡֵ·¶Î§£®
| F1P |
| F2Q |
£¨¢ò£©¢ÙÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
| x2 |
| a2 |
| y2 |
| b2 |
¢Ú·ÖÀàÌÖÂÛ£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃ
| F2A |
| F2B |
| 1 |
| ¦Ë |
| -4 |
| 1+2k2 |
| TA |
| TB |
| TA |
| TB |
| TA |
| TB |
½â´ð£º
½â£º£¨¢ñ£©ÓÉÌâÒâµÃF2£¨1£¬0£©£¬F1£¨-1£¬0£©£¬ÉèP£¨x0£¬y0£©£¬Q£¨x0£¬-y0£©£¬
Ôò
=(x0+1£¬y0)£¬
=(x0-1£¬-y0)£®
ÓÉ
•
=-5£¬
µÃx02-1-y02=-5¼´x02-y02=-4£¬¢Ù¡£¨3·Ö£©
ÓÖP£¨x0£¬y0£©ÔÚÅ×ÎïÏßÉÏ£¬Ôòy02=4x0£¬¢Ú
ÁªÁ¢¢Ù¡¢¢ÚÒ×µÃx0=2¡£¨5·Ö£©
£¨¢ò£©¢ÙÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬ÓÉÌâÒâµÃc=1£¬
ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
+
=1(a£¾b£¾0)£¬
ÓÉ
•2c•b=1£¬½âµÃb=1¡£¨6·Ö£©
´Ó¶øa2=b2+c2=2£¬
¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ
+y2=1¡£¨7·Ö£©
¢Ú£¨1£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬¼´¦Ë=-1ʱ£¬A(1£¬
)£¬B(1£¬-
)£¬
ÓÖT£¨2£¬0£©£¬ËùÒÔ|
+
|=|(-1£¬
)+(-1£¬-
)|=2¡£¨8·Ö£©
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ
µÃ£¨1+2k2£©x2-4k2x+2k2-2=0£»
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÏÔÈ»y1¡Ù0£¬y2¡Ù0£¬ÔòÓɸùÓëϵÊýµÄ¹ØÏµ£¬
¿ÉµÃ£ºx1+x2=
£¬x1•x2=
¡£¨9·Ö£©
y1+y2=k(x1+x2)-2k=
¢Ý
y1•y2=k2(x1x2-(x1+x2)+1)=
£¬¢Þ
ÒòΪ
=¦Ë
£¬ËùÒÔ
=¦Ë£¬ÇҦˣ¼0£®
½«¢Ýʽƽ·½³ýÒÔ¢ÞʽµÃ£º¦Ë+
+2=
£®
ÓɦˡÊ[-2£¬-1£©µÃ¦Ë+
¡Ê[-
£¬-2)¼´¦Ë+
+2¡Ê[-
£¬0)£¬
¹Ê-
¡Ü
£¼0£¬½âµÃk2¡Ý
£®¡£¨10·Ö£©
ÒòΪ
=£¨x1-2£¬y1£©£¬
=£¨x2-2£¬y2£©£¬ËùÒÔ
+
=£¨x1+x2-4£¬y1+y2£©£¬
ÓÖx1+x2-4=
£¬
¹Ê|
+
|2=(x1+x2-4)2+(y1+y2)2=
+
=
=4+
+
¡£¨11·Ö£©
Áît=
£¬ÒòΪk2¡Ý
ËùÒÔ0£¼
¡Ü
£¬¼´t¡Ê(0£¬
]£¬
ËùÒÔ|
+
|2=2t2+10t+4=2(t+
)2-
¡Ê(4£¬
]£®
ËùÒÔ|
+
|¡Ê(2£¬
]¡£¨13·Ö£©
×ÛÉÏËùÊö£º|
+
|¡Ê[2£¬
£©£®¡£¨14·Ö£©
Ôò
| F1P |
| F2Q |
ÓÉ
| F1P |
| F2Q |
µÃx02-1-y02=-5¼´x02-y02=-4£¬¢Ù¡£¨3·Ö£©
ÓÖP£¨x0£¬y0£©ÔÚÅ×ÎïÏßÉÏ£¬Ôòy02=4x0£¬¢Ú
ÁªÁ¢¢Ù¡¢¢ÚÒ×µÃx0=2¡£¨5·Ö£©
£¨¢ò£©¢ÙÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬ÓÉÌâÒâµÃc=1£¬
ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
| x2 |
| a2 |
| y2 |
| b2 |
ÓÉ
| 1 |
| 2 |
´Ó¶øa2=b2+c2=2£¬
¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ
| x2 |
| 2 |
¢Ú£¨1£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬¼´¦Ë=-1ʱ£¬A(1£¬
| ||
| 2 |
| ||
| 2 |
ÓÖT£¨2£¬0£©£¬ËùÒÔ|
| TA |
| TB |
| ||
| 2 |
| ||
| 2 |
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÏÔÈ»y1¡Ù0£¬y2¡Ù0£¬ÔòÓɸùÓëϵÊýµÄ¹ØÏµ£¬
¿ÉµÃ£ºx1+x2=
| 4k2 |
| 1+2k2 |
| 2k2-2 |
| 1+2k2 |
y1+y2=k(x1+x2)-2k=
| -2k |
| 1+2k2 |
y1•y2=k2(x1x2-(x1+x2)+1)=
| -k2 |
| 1+2k2 |
ÒòΪ
| F2A |
| F2B |
| y1 |
| y2 |
½«¢Ýʽƽ·½³ýÒÔ¢ÞʽµÃ£º¦Ë+
| 1 |
| ¦Ë |
| -4 |
| 1+2k2 |
ÓɦˡÊ[-2£¬-1£©µÃ¦Ë+
| 1 |
| ¦Ë |
| 5 |
| 2 |
| 1 |
| ¦Ë |
| 1 |
| 2 |
¹Ê-
| 1 |
| 2 |
| -4 |
| 1+2k2 |
| 7 |
| 2 |
ÒòΪ
| TA |
| TB |
| TA |
| TB |
ÓÖx1+x2-4=
| -4(1+k2) |
| 1+2k2 |
¹Ê|
| TA |
| TB |
| 16(1+k2)2 |
| (1+2k2)2 |
| 4k2 |
| (1+2k2)2 |
| 4(1+2k2)2+10(1+2k2)+2 |
| (1+2k2)2 |
| 10 |
| 1+2k2 |
| 2 |
| (1+2k2)2 |
Áît=
| 1 |
| 1+2k2 |
| 7 |
| 2 |
| 1 |
| 1+2k2 |
| 1 |
| 8 |
| 1 |
| 8 |
ËùÒÔ|
| TA |
| TB |
| 5 |
| 2 |
| 17 |
| 2 |
| 169 |
| 32 |
ËùÒÔ|
| TA |
| TB |
13
| ||
| 8 |
×ÛÉÏËùÊö£º|
| TA |
| TB |
13
| ||
| 8 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éΤ´ï¶¨Àí£¬¿¼²éСʱ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãPÊÇÓɲ»µÈʽ×é
ËùÈ·¶¨µÄÆ½ÃæÇøÓòÄڵ͝µã£¬QÊÇÖ±Ïß2x+y=0ÉÏÈÎÒâÒ»µã£¬OÎª×ø±êԵ㣬Ôò|
+
|µÄ×îСֵΪ£¨¡¡¡¡£©
|
| OP |
| OQ |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
| D¡¢1 |
¶¬ÌìÊǸÐð´«²¥µÄ¸ß·¢¼¾½Ú£¬Á¬Ðø6ÖÜÖУ¬Ã¿ÖÜ»¼²¡·¢ÉÕµÄÈËÊýÈç±íËùʾ£¬Í¼ÎªÍ³¼ÆÁùÖÜ·¢ÉÕÈËÊýµÄ³ÌÐò¿òͼ£¬ÔòͼÖÐÅжϿò£¬Ö´ÐпòÓ¦Ì¡¡¡¡£©
| ÖÜ´Î | 1 | 2 | 3 | 4 | 5 | 6 |
| ·¢ÉÕÈËÊý | a1 | a2 | a3 | a4 | a5 | a6 |
| A¡¢i£¼6£»s=s+ai |
| B¡¢i¡Ü6£»s=s+i |
| C¡¢i¡Ü6£»s=s+ai |
| D¡¢i£¾6£»s=a1+a2+¡+ai |