ÌâÄ¿ÄÚÈÝ

ÒÑÖªÅ×ÎïÏßy2=4xµÄ½¹µãΪF2£¬µãF1ÓëF2¹ØÓÚ×ø±êÔ­µã¶Ô³Æ£¬Ö±Ïßm´¹Ö±ÓÚxÖᣨ´¹×ãΪT£©£¬ÓëÅ×ÎïÏß½»ÓÚ²»Í¬µÄÁ½µãP¡¢Q£¬ÇÒ
F1P
F2Q
=-5£®
£¨¢ñ£©ÇóµãTµÄºá×ø±êx0£»
£¨¢ò£©ÈôÍÖÔ²CÒÔF1£¬F2Ϊ½¹µã£¬ÇÒF1£¬F2¼°ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£®
¢ÙÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
¢Ú¹ýµãF2×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Éè
F2A
=¦Ë
F2B
£¬Èô¦Ë¡Ê[-2£¬-1]£¬Çó|
TA
+
TB
|µÄȡֵ·¶Î§£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©ÀûÓÃ
F1P
F2Q
=-5£¬½áºÏP£¨x0£¬y0£©ÔÚÅ×ÎïÏßÉÏ£¬¼´¿ÉÇóµãTµÄºá×ø±êx0£»
£¨¢ò£©¢ÙÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬ÀûÓÃF1£¬F2¼°ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£¬¼´¿ÉÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
¢Ú·ÖÀàÌÖÂÛ£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃ
F2A
=¦Ë
F2B
£¬¿ÉµÃ¦Ë+
1
¦Ë
+2=
-4
1+2k2
£¬Çó³ökµÄ·¶Î§£¬
TA
=£¨x1-2£¬y1£©£¬
TB
=£¨x2-2£¬y2£©£¬ËùÒÔ|
TA
+
TB
|=£¨x1+x2-4£¬y1+y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬ÓÃk±íʾ£¬¼´¿ÉÇó|
TA
+
TB
|µÄȡֵ·¶Î§£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉÌâÒâµÃF2£¨1£¬0£©£¬F1£¨-1£¬0£©£¬ÉèP£¨x0£¬y0£©£¬Q£¨x0£¬-y0£©£¬
Ôò
F1P
=(x0+1£¬y0)
£¬
F2Q
=(x0-1£¬-y0)
£®
ÓÉ
F1P
F2Q
=-5
£¬
µÃx02-1-y02=-5¼´x02-y02=-4£¬¢Ù¡­£¨3·Ö£©
ÓÖP£¨x0£¬y0£©ÔÚÅ×ÎïÏßÉÏ£¬Ôòy02=4x0£¬¢Ú
ÁªÁ¢¢Ù¡¢¢ÚÒ×µÃx0=2¡­£¨5·Ö£©
£¨¢ò£©¢ÙÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬ÓÉÌâÒâµÃc=1£¬
ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬
ÓÉ
1
2
•2c•b=1
£¬½âµÃb=1¡­£¨6·Ö£©
´Ó¶øa2=b2+c2=2£¬
¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
2
+y2=1
¡­£¨7·Ö£©
¢Ú£¨1£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬¼´¦Ë=-1ʱ£¬A(1£¬
2
2
)
£¬B(1£¬-
2
2
)
£¬
ÓÖT£¨2£¬0£©£¬ËùÒÔ|
TA
+
TB
|=|(-1£¬
2
2
)+(-1£¬-
2
2
)|=2
¡­£¨8·Ö£©
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬¼´¦Ë¡Ê[-2£¬-1£©Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ
y=kx-k
x2
2
+y2=1
µÃ£¨1+2k2£©x2-4k2x+2k2-2=0£»
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÏÔÈ»y1¡Ù0£¬y2¡Ù0£¬ÔòÓɸùÓëϵÊýµÄ¹ØÏµ£¬
¿ÉµÃ£ºx1+x2=
4k2
1+2k2
£¬x1x2=
2k2-2
1+2k2
¡­£¨9·Ö£©
y1+y2=k(x1+x2)-2k=
-2k
1+2k2
¢Ý
y1y2=k2(x1x2-(x1+x2)+1)=
-k2
1+2k2
£¬¢Þ
ÒòΪ
F2A
=¦Ë
F2B
£¬ËùÒÔ
y1
y2
=¦Ë£¬ÇҦˣ¼0£®
½«¢Ýʽƽ·½³ýÒÔ¢ÞʽµÃ£º¦Ë+
1
¦Ë
+2=
-4
1+2k2
£®
ÓɦˡÊ[-2£¬-1£©µÃ¦Ë+
1
¦Ë
¡Ê[-
5
2
£¬-2)
¼´¦Ë+
1
¦Ë
+2¡Ê[-
1
2
£¬0)
£¬
¹Ê-
1
2
¡Ü
-4
1+2k2
£¼0
£¬½âµÃk2¡Ý
7
2
£®¡­£¨10·Ö£©
ÒòΪ
TA
=£¨x1-2£¬y1£©£¬
TB
=£¨x2-2£¬y2£©£¬ËùÒÔ
TA
+
TB
=£¨x1+x2-4£¬y1+y2£©£¬
ÓÖx1+x2-4=
-4(1+k2)
1+2k2
£¬
¹Ê|
TA
+
TB
|2=(x1+x2-4)2+(y1+y2)2=
16(1+k2)2
(1+2k2)2
+
4k2
(1+2k2)2
=
4(1+2k2)2+10(1+2k2)+2
(1+2k2)2
=4+
10
1+2k2
+
2
(1+2k2)2
¡­£¨11·Ö£©
Áît=
1
1+2k2
£¬ÒòΪk2¡Ý
7
2
ËùÒÔ0£¼
1
1+2k2
¡Ü
1
8
£¬¼´t¡Ê(0£¬
1
8
]
£¬
ËùÒÔ|
TA
+
TB
|2=2t2+10t+4=2(t+
5
2
)2-
17
2
¡Ê(4£¬
169
32
]
£®
ËùÒÔ|
TA
+
TB
|¡Ê(2£¬
13
2
8
]
¡­£¨13·Ö£©
×ÛÉÏËùÊö£º|
TA
+
TB
|¡Ê[2£¬
13
2
8
£©£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éΤ´ï¶¨Àí£¬¿¼²éСʱ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø