题目内容

已知正数数列{an}中,a1=1,前n项和为Sn,对任意n∈N*,lgSn、lgn、lg
1
an
成等差数列.
(1)求an和Sn
(2)设bn=
Sn
n !
,数列{bn}的前n项和为Tn,当n≥2时,证明:Sn<Tn<2.
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出Sn=ann2,从而得到
an
an-1
=
n-1
n+1
,利用累乘法求出an=
2
n(n+1)
=2(
1
n
-
1
n+1
)
,再由裂项求和法能求出Sn
(2)由(1)得到bn=2[
1
n!
-
1
(n+1)!
],用裂项求和法得到Tn=2[1-
1
(n+1)!
]<2,由此能够证明Sn<Tn<2.
解答: (本小题满分14分)
(1)解:依题意:lgSn+lg
1
an
=2lgn
,即
Sn
an
=n2

Sn=ann2
an+Sn-1=ann2
当n≥2时,Sn-1=an-1(n-1)2
②代入①并整理得:
an
an-1
=
n-1
n+1

a2
a1
=
1
3
a3
a2
=
2
4
a4
a3
=
3
5
a5
a4
=
4
6
an-3
an-2
=
n-4
n-2

an-2
an-1
=
n-3
n-1
an-1
an-2
=
n-2
n
an
an-1
=
n-1
n+1

把以上n个式子相乘得:
an
a1
=
2
n(n+1)
,又∵a1=1,
an=
2
n(n+1)

∵当n=1时,a1=1也满足上式,∴an=
2
n(n+1)

an=
2
n(n+1)
=2(
1
n
-
1
n+1
)

∴Sn=2[(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1
)=
2n
n+1

(2)证明:∵bn=
Sn
n!
=
2n
n+1
n!
=
2n
(n+1)n!
=2[
1
n!
-
1
(n+1)!
]

Tn=2[
1
1!
-
1
2!
+
1
2!
-
1
3!
+
1
3!
-
1
4!
+…+
1
n!
-
1
(n+1)!
]=2[1-
1
(n+1)!
]

∵n≥2,∴
1
(n+1)!
>0
,∴Tn=2[1-
1
(n+1)!
]<2

Tn-Sn=2[1-
1
(n+1)!
]-
2n
n+1
=2[
(n+1)!-1
(n+1)!
-
n•n!
(n+1)!
]=
2
(n+1)!
[(n+1)!-1-n•n!]

=
2
(n+1)!
[(n+1)n!-1-n•n!]=
2
(n+1)!
(n!-1)>0

∴Sn<Tn<2.
点评:本题考查数列的通项公式和前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网