题目内容
已知正数数列{an}中,a1=1,前n项和为Sn,对任意n∈N*,lgSn、lgn、lg
成等差数列.
(1)求an和Sn;
(2)设bn=
,数列{bn}的前n项和为Tn,当n≥2时,证明:Sn<Tn<2.
| 1 |
| an |
(1)求an和Sn;
(2)设bn=
| Sn |
| n ! |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出Sn=ann2,从而得到
=
,利用累乘法求出an=
=2(
-
),再由裂项求和法能求出Sn.
(2)由(1)得到bn=2[
-
],用裂项求和法得到Tn=2[1-
]<2,由此能够证明Sn<Tn<2.
| an |
| an-1 |
| n-1 |
| n+1 |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)由(1)得到bn=2[
| 1 |
| n! |
| 1 |
| (n+1)! |
| 1 |
| (n+1)! |
解答:
(本小题满分14分)
(1)解:依题意:lgSn+lg
=2lgn,即
=n2,
∴Sn=ann2.
∴an+Sn-1=ann2①.
当n≥2时,Sn-1=an-1(n-1)2②
②代入①并整理得:
=
∴
=
,
=
,
=
,
=
…
=
,
=
,
=
=
,
把以上n个式子相乘得:
=
,又∵a1=1,
∴an=
∵当n=1时,a1=1也满足上式,∴an=
,
∵an=
=2(
-
)
∴Sn=2[(1-
)+(
-
)+(
-
)+…+(
-
)]
=2(1-
)=
.
(2)证明:∵bn=
=
=
=2[
-
],
∴Tn=2[
-
+
-
+
-
+…+
-
]=2[1-
]
∵n≥2,∴
>0,∴Tn=2[1-
]<2
又Tn-Sn=2[1-
]-
=2[
-
]=
[(n+1)!-1-n•n!]
=
[(n+1)n!-1-n•n!]=
(n!-1)>0
∴Sn<Tn<2.
(1)解:依题意:lgSn+lg
| 1 |
| an |
| Sn |
| an |
∴Sn=ann2.
∴an+Sn-1=ann2①.
当n≥2时,Sn-1=an-1(n-1)2②
②代入①并整理得:
| an |
| an-1 |
| n-1 |
| n+1 |
∴
| a2 |
| a1 |
| 1 |
| 3 |
| a3 |
| a2 |
| 2 |
| 4 |
| a4 |
| a3 |
| 3 |
| 5 |
| a5 |
| a4 |
| 4 |
| 6 |
| an-3 |
| an-2 |
| n-4 |
| n-2 |
| an-2 |
| an-1 |
| n-3 |
| n-1 |
| an-1 |
| an-2 |
| n-2 |
| n |
| an |
| an-1 |
| n-1 |
| n+1 |
把以上n个式子相乘得:
| an |
| a1 |
| 2 |
| n(n+1) |
∴an=
| 2 |
| n(n+1) |
∵当n=1时,a1=1也满足上式,∴an=
| 2 |
| n(n+1) |
∵an=
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=2[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
| 2n |
| n+1 |
(2)证明:∵bn=
| Sn |
| n! |
| ||
| n! |
| 2n |
| (n+1)n! |
| 1 |
| n! |
| 1 |
| (n+1)! |
∴Tn=2[
| 1 |
| 1! |
| 1 |
| 2! |
| 1 |
| 2! |
| 1 |
| 3! |
| 1 |
| 3! |
| 1 |
| 4! |
| 1 |
| n! |
| 1 |
| (n+1)! |
| 1 |
| (n+1)! |
∵n≥2,∴
| 1 |
| (n+1)! |
| 1 |
| (n+1)! |
又Tn-Sn=2[1-
| 1 |
| (n+1)! |
| 2n |
| n+1 |
| (n+1)!-1 |
| (n+1)! |
| n•n! |
| (n+1)! |
| 2 |
| (n+1)! |
=
| 2 |
| (n+1)! |
| 2 |
| (n+1)! |
∴Sn<Tn<2.
点评:本题考查数列的通项公式和前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是( )

| A、A | B、B | C、C | D、D |