题目内容

如图,正方形ADEF与梯形ABCD所在的闰面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(I)求证:BM∥平面ADEF;
(Ⅱ)求平面BEC与平面ADEF所成锐二面角的余弦值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:计算题,证明题,转化思想,空间位置关系与距离,空间角
分析:(I)取DE中点N,连接MN,AN,由三角形中位线定理,结合已知中AB∥CD,AB=AD=2,CD=4,易得四边形ABMN为平行四边形,所以BM∥AN,再由线面平面的判定定理,可得BM∥平面ADEF;
(II)以D为原点,DA,DC,DE所在直线为x,y,z轴,建立空间直角坐标系,分别求出平面BEC与平面ADEF的法向量,代入向量夹角公式,即可求出平面BEC与平面ADEF所成锐二面角的余弦值.
解答: 证明:(I)取DE中点N,连接MN,AN
在△EDC中,M、N分别为EC,ED的中点,所以MN∥CD,且MN=
1
2
CD.
由已知AB∥CD,AB=
1
2
CD,所以MN∥AB,且MN=AB.
所以四边形ABMN为平行四边形,所以BM∥AN
又因为AN?平面ADEF,
且BM?平面ADEF,
所以BM∥平面ADEF.(4分)
(II)以D为原点,DA,DC,DE所在直线为x,y,z轴,建立空间直角坐标系.
B(2,2,0),C(0,4,0),E(0,0,2),平面ADEF的一个法向量为
m
=(0,1,0).
n
=(x,y,z)为平面BEC的一个法向量,因为
BC
=(-2,2,0),
CE
=(0,-4,2)
-2x+2y=0 
-4y+2z=0
令x=1,得y=1,z=2
所以
n
=(1,1,2)为平面BEC的一个法向量
设平面BEC与平面ADEF所成锐二面角为θ
则cosθ=
n
m
|
n
||
m
|
=
6
6

所以平面BEC与平面ADEF所成锐二面角为余弦值为
6
6
点评:本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,平面与平面垂直的判定,熟练掌握空间直线与平面不同位置关系(平行和垂直)的判定定理
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网