题目内容

8.证明:${(x-\frac{1}{x})^{2n}}$的展开式中的中间一项是${(-2)^n}\frac{1×3×5×…×(2n-1)}{n!}$.

分析 根据二项展开式的通项公式,写出并化简展开式的中间一项即可.

解答 证明:${(x-\frac{1}{x})^{2n}}$的展开式共有2n+1项,展开式的中间一项是:
Tn+1=${C}_{2n}^{n}$•xn•${(-\frac{1}{x})}^{n}$
=(-1)n•${C}_{2n}^{n}$
=(-1)n•$\frac{(2n)!}{n!•n!}$
=(-1)n•$\frac{{2}^{n}•n!•1×3×5×…×(2n-1)}{n!•n!}$
=(-2)n•$\frac{1×3×5×…×(2n-1)}{n!}$.

点评 本题考查了二项展开式的通项公式与应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网