题目内容
设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是( )
| A、若m∥α,n⊥β且α⊥β,则m⊥n |
| B、若α⊥β,m∥n且 n⊥β,则m∥α |
| C、若m?α,n?β且m∥n,则α∥β |
| D、若m⊥α,n⊥β且m⊥n,则α⊥β |
考点:空间中直线与平面之间的位置关系
专题:探究型,空间位置关系与距离
分析:对选项分别进行判断,即可得出结论.
解答:
解:若m∥α,n⊥β且α⊥β,则平行,相交或异面,故A不正确;
若α⊥β,m∥n且 n⊥β,则m∥α或m?α,故B不正确;
根据面面平行的判定定理,可得C不正确;
根据平面与平面垂直的判定定理,可得D正确,
故选D.
若α⊥β,m∥n且 n⊥β,则m∥α或m?α,故B不正确;
根据面面平行的判定定理,可得C不正确;
根据平面与平面垂直的判定定理,可得D正确,
故选D.
点评:本题考查空间中直线与平面之间的位置关系,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关题目
已知函数f(x)=
,若f(a)-f(-a)≤2f(1),则a的取值范围是( )
|
| A、[1,+∞) |
| B、(-∞,1] |
| C、[-1,1] |
| D、[-2,2] |
设a=
dx,则
sinxdx=( )
| ∫ | 2 0 |
| 4-x2 |
| ∫ | a 0 |
| A、2π | B、π | C、2 | D、1 |
已知a,b,c是实数,下列命题是真命题的有( )个
①“a>b”是“a2>b2”的充分条件;
②“a>b”是“a2>b2”的必要条件;
③“a>b”是“ac2>bc2”的充分条件;
④“a>b”是“|a|>|b|”的充要条件.
①“a>b”是“a2>b2”的充分条件;
②“a>b”是“a2>b2”的必要条件;
③“a>b”是“ac2>bc2”的充分条件;
④“a>b”是“|a|>|b|”的充要条件.
| A、0 | B、1 | C、2 | D、3 |
已知集合M={x|y=2x},N={x|y=lg(x-1)},则M∩∁RN=( )
| A、(-∞,1] | B、(-∞,1) |
| C、R | D、∅ |