题目内容

函数f(x)=1-
2
x+1
,x∈[2,3]的最大值是
 
考点:函数单调性的性质
专题:计算题,函数的性质及应用
分析:由于y=
2
x+1
在[2,3]上递减,则f(x)在[2,3]上递增,则有f(3)最大.
解答: 解:函数f(x)=1-
2
x+1
,x∈[2,3],
由于y=
2
x+1
在[2,3]上递减,则f(x)在[2,3]上递增,
则最大值为f(3)=1-
2
1+3
=
1
2

故答案为:
1
2
点评:本题考查函数的单调性的运用:求最值,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网