ÌâÄ¿ÄÚÈÝ
¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM¡Ý0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆÎªº¯Êýf£¨x£©µÄÒ»¸öÉϽ磮ÒÑÖªº¯Êýf£¨x£©=
+
£¬g£¨x£©=log2
£®ÆäÖÐa£¼0
£¨1£©Èôº¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬ÇóʵÊýaµÄÖµ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Çóº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³ÉµÄ¼¯ºÏ£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚÕâÑùµÄ¸ºÊµÊýk£¬Ê¹g£¨k-cos¦È£©+g£¨cos2¦È-k2£©¡Ý0
¶ÔÒ»ÇЦȡÊRºã³ÉÁ¢£¬Èô´æÔÚ£¬ÊÔÇó³ökȡֵµÄ¼¯ºÏ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
| ex |
| a |
| a |
| ex |
| 3+ax |
| x+3 |
£¨1£©Èôº¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬ÇóʵÊýaµÄÖµ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Çóº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³ÉµÄ¼¯ºÏ£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚÕâÑùµÄ¸ºÊµÊýk£¬Ê¹g£¨k-cos¦È£©+g£¨cos2¦È-k2£©¡Ý0
¶ÔÒ»ÇЦȡÊRºã³ÉÁ¢£¬Èô´æÔÚ£¬ÊÔÇó³ökȡֵµÄ¼¯ºÏ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºº¯ÊýÓë·½³ÌµÄ×ÛºÏÔËÓÃ
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©Í¨¹ýf£¨x£©=
+
Ϊżº¯Êý£¬ÍƳöa2=1£¬È»ºóÇó³öa£®
£¨2£©Çó³ög(x)=log2
£¬Í¨¹ýµ¥µ÷ÐÔÇó³ö-1¡Üg£¨x£©¡Ü1£¬È»ºóÇó³öº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³É¼¯ºÏΪ[1£¬+¡Þ£©£®
£¨3£©Çó³ög£¨x£©µÄ¶¨ÒåÓòΪ£¨-3£¬3£©£¬ÅжÏf£¨x£©ÊÇÆæº¯Êý£®Í¨¹ýf£¨x£©ÊÇ£¨-3£¬3£©Éϵļõº¯Êý£¬×ª»¯Îª£º
¶Ô¦È¡ÊRºã³ÉÁ¢£¬È»ºóÇó½âkµÄ·¶Î§£®
| ex |
| a |
| a |
| ex |
£¨2£©Çó³ög(x)=log2
| 3-x |
| x+3 |
£¨3£©Çó³ög£¨x£©µÄ¶¨ÒåÓòΪ£¨-3£¬3£©£¬ÅжÏf£¨x£©ÊÇÆæº¯Êý£®Í¨¹ýf£¨x£©ÊÇ£¨-3£¬3£©Éϵļõº¯Êý£¬×ª»¯Îª£º
|
½â´ð£º
£¨±¾Ìâ14·Ö£©
½â£º£¨1£©ÒòΪf£¨x£©=
+
Ϊżº¯Êý£¬
ËùÒÔf£¨-x£©=f£¨x£©£¬¼´
+
=
+
£¬
¡à(a-
)(ex-
)=0
µÃa2=1£¬
¶øa£¼0£¬¹Êa=-1¡£¨2·Ö£©£®
£¨2£©ÓÉ£¨1£©µÃ£ºg(x)=log2
£¬
¶øg£¨x£©=log2£¨-1+
£©£¬
Ò×Öªg£¨x£©ÔÚÇø¼ä[-1£¬1]Éϵ¥µ÷µÝ¼õ£¬
ËùÒÔ-1¡Üg£¨x£©¡Ü1£¬
ËùÒÔº¯Êýg£¨x£©µÄÖµÓòΪ[-1£¬1]£¬
ËùÒÔ|g£¨x£©|¡Ü1£¬¡£¨5·Ö£©
¹Êº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³É¼¯ºÏΪ[1£¬+¡Þ£©£®¡£¨6·Ö£©
£¨3£©¡ßg£¨x£©µÄ¶¨ÒåÓòΪ£¨-3£¬3£©
ÓÉÓÚf(-x)=lg(
)=-lg(
)=-f(x)¡àf£¨x£©ÊÇÆæº¯Êý£®¡£¨7·Ö£©
ÓÖÒ×Öªg£¨x£©ÔÚÇø¼ä£¨-3£¬3£©Éϵ¥µ÷µÝ¼õ£¬
¡ßg£¨k-cos¦È£©+g£¨cos2¦È-k2£©¡Ý0
¡àf£¨k-cos¦È£©¡Ý-f£¨cos2¦È-k2£©=f£¨k2-cos2¦È£©¡£¨8·Ö£©
¡ßf£¨x£©ÊÇ£¨-3£¬3£©Éϵļõº¯Êý
¡à
¶Ô¦È¡ÊRºã³ÉÁ¢£¬
ÓÉk-cos¦È¡Ük2-cos2¦È¶Ô¦È¡ÊRºã³ÉÁ¢£¬
µÃ£ºk-k2¡Ücos¦È-cos2¦È¶Ô¦È¡ÊRºã³ÉÁ¢£®¡£¨10·Ö£©
Áîy=cos¦È-cos2¦È=
-(cos¦È-
)2£¬
£¬
¡àk-k2¡Ü-2⇒k¡Ü-1£¬
ͬÀí£ºÓÉ-3£¼k-cos¦È£¼3¶Ô¦È¡ÊRºã³ÉÁ¢µÃ£º-2£¼k£¼2¡£¨12·Ö£©£®
ÓÉ-3£¼cos2¦È-k2£¼3¶Ô¦È¡ÊRºã³ÉÁ¢µÃ£º-
£¼k£¼
¡£¨13·Ö£©£®
¼´×ÛÉÏËùµÃ£º-
£¼k¡Ü-1£®
ËùÒÔ´æÔÚÕâÑùµÄkÆä·¶Î§Îª-
£¼k¡Ü-1¡£¨14·Ö£©£®
½â£º£¨1£©ÒòΪf£¨x£©=
| ex |
| a |
| a |
| ex |
ËùÒÔf£¨-x£©=f£¨x£©£¬¼´
| e-x |
| a |
| a |
| e-x |
| ex |
| a |
| a |
| ex |
¡à(a-
| 1 |
| a |
| 1 |
| ex |
µÃa2=1£¬
¶øa£¼0£¬¹Êa=-1¡£¨2·Ö£©£®
£¨2£©ÓÉ£¨1£©µÃ£ºg(x)=log2
| 3-x |
| x+3 |
¶øg£¨x£©=log2£¨-1+
| 1 |
| x+3 |
Ò×Öªg£¨x£©ÔÚÇø¼ä[-1£¬1]Éϵ¥µ÷µÝ¼õ£¬
ËùÒÔ-1¡Üg£¨x£©¡Ü1£¬
ËùÒÔº¯Êýg£¨x£©µÄÖµÓòΪ[-1£¬1]£¬
ËùÒÔ|g£¨x£©|¡Ü1£¬¡£¨5·Ö£©
¹Êº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³É¼¯ºÏΪ[1£¬+¡Þ£©£®¡£¨6·Ö£©
£¨3£©¡ßg£¨x£©µÄ¶¨ÒåÓòΪ£¨-3£¬3£©
ÓÉÓÚf(-x)=lg(
| 3+x |
| 3-x |
| 3-x |
| 3+x |
ÓÖÒ×Öªg£¨x£©ÔÚÇø¼ä£¨-3£¬3£©Éϵ¥µ÷µÝ¼õ£¬
¡ßg£¨k-cos¦È£©+g£¨cos2¦È-k2£©¡Ý0
¡àf£¨k-cos¦È£©¡Ý-f£¨cos2¦È-k2£©=f£¨k2-cos2¦È£©¡£¨8·Ö£©
¡ßf£¨x£©ÊÇ£¨-3£¬3£©Éϵļõº¯Êý
¡à
|
ÓÉk-cos¦È¡Ük2-cos2¦È¶Ô¦È¡ÊRºã³ÉÁ¢£¬
µÃ£ºk-k2¡Ücos¦È-cos2¦È¶Ô¦È¡ÊRºã³ÉÁ¢£®¡£¨10·Ö£©
Áîy=cos¦È-cos2¦È=
| 1 |
| 4 |
| 1 |
| 2 |
|
¡àk-k2¡Ü-2⇒k¡Ü-1£¬
ͬÀí£ºÓÉ-3£¼k-cos¦È£¼3¶Ô¦È¡ÊRºã³ÉÁ¢µÃ£º-2£¼k£¼2¡£¨12·Ö£©£®
ÓÉ-3£¼cos2¦È-k2£¼3¶Ô¦È¡ÊRºã³ÉÁ¢µÃ£º-
| 3 |
| 3 |
¼´×ÛÉÏËùµÃ£º-
| 3 |
ËùÒÔ´æÔÚÕâÑùµÄkÆä·¶Î§Îª-
| 3 |
µãÆÀ£º±¾Ì⿼²éº¯ÊýÓë·½³ÌµÄÓ¦Ó㬺¯ÊýµÄµ¥µ÷ÐÔÒÔ¼°ÆæÅ¼ÐÔÒÔ¼°º¯ÊýµÄºã³ÉÁ¢ÎÊÌâµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªa£¾b£¾c£¾0£¬Ôòa2+
+
+
µÄ×îСֵΪ£¨¡¡¡¡£©
| 1 |
| bc |
| 1 |
| a(a-b) |
| 1 |
| b(a-c) |
| A¡¢4 | B¡¢6 | C¡¢8 | D¡¢10 |