题目内容
各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2an2+an-1.
(1)求数列{an}的通项公式;
(2)记bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)记bn=
| an |
| 2n |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出(an+1+an)(2an+1-2an-1)=0.由an>0,得数列{an}是以1为首项,
为公差的等差数列,由此能求出an=
.
(2)由bn=
=
,利用错位相减法能求出数列{bn}的前n项和Tn.
| 1 |
| 2 |
| n+1 |
| 2 |
(2)由bn=
| an |
| 2n |
| n+1 |
| 2n+1 |
解答:
解:(1)∵2Sn=2an2+an-1,∴2Sn+1=2an+12+an+1-1,
两式相减得:2an+1=2(an+1-an)(an+1+an)+(an+1-an),
即(an+1+an)(2an+1-2an-1)=0.
∵an>0,∴2an+1-2an-1=0,∴an+1-an=
.
∴数列{an}是以1为首项,
为公差的等差数列,
∴an=
.
(2)∵bn=
=
,
∴Tn=
+
+
+…+
,①
Tn=
+
+
+…+
,②
①-②得
Tn=
+
+
+…+
-
=
+
-
=
-
-
,
∴Tn=
-
-
=
-
.
两式相减得:2an+1=2(an+1-an)(an+1+an)+(an+1-an),
即(an+1+an)(2an+1-2an-1)=0.
∵an>0,∴2an+1-2an-1=0,∴an+1-an=
| 1 |
| 2 |
∴数列{an}是以1为首项,
| 1 |
| 2 |
∴an=
| n+1 |
| 2 |
(2)∵bn=
| an |
| 2n |
| n+1 |
| 2n+1 |
∴Tn=
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 2 |
| 23 |
| 3 |
| 24 |
| 4 |
| 25 |
| n+1 |
| 2n+2 |
①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2n+2 |
=
| 3 |
| 4 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
∴Tn=
| 3 |
| 2 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2014的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|