题目内容
已知数列{an}满足a1=
,2an+1=an+1•an+1.
(Ⅰ)求a2,a3,a4的值,由此猜测{an}的通项公式,并证明你的结论;
(Ⅱ)证明:a1•a3•a5…a2n-1<
<
sin
.
| 1 |
| 2 |
(Ⅰ)求a2,a3,a4的值,由此猜测{an}的通项公式,并证明你的结论;
(Ⅱ)证明:a1•a3•a5…a2n-1<
|
| 2 |
| 1 | ||
|
考点:数列递推式
专题:综合题,等差数列与等比数列
分析:(Ⅰ)令n=1,2,3,可求a2,a3,a4的值,猜想an=
,用数学归纳法即可证明.
(Ⅱ)
=
=
,可证
<
,从而有a1•a3•a5…a2n-1=
×
×…×
<
=
;令函数f(x)=x-
sinx,利用导数可得x<
sinx在(0,
)恒成立,可知0<
≤
<
,则有
<
sin
.
| n |
| n+1 |
(Ⅱ)
|
|
|
| 2n-1 |
| 2n |
| ||
|
| 1 |
| 2 |
| 3 |
| 4 |
| 2n-1 |
| 2n |
|
|
| 2 |
| 2 |
| π |
| 4 |
|
|
| π |
| 4 |
|
| 2 |
|
解答:
解:(Ⅰ)令n=1,2,3可知a2=
,a3=
,a4=
,
猜想an=
,下用数学归纳法证明.
(1)n=1时,显然成立;
(2)假设n=k时,命题成立.即ak=
.
当n=k+1时,由题可知ak+1=
=
=
.
故n=k+1时,命题也成立.
由(1)(2)可知,an=
.
(Ⅱ)证明:∵
=
=
,
∵
<
=
=
,
a1•a3•a5…a2n-1=
×
×…×
<
=
,
∴a1•a3•a5…a2n-1<
,
由于
=
,可令函数f(x)=x-
sinx,则f′(x)=1-
cosx,
令f'(x)=0,得cosx=
,给定区间(0,
),则有f'(x)<0,则函数f(x)在(0,
)上单调递减,
∴f(x)<f(0)=0,即x<
sinx在(0,
)恒成立,
又0<
≤
<
,则有
<
sin
,即
<
sin
.
| 2 |
| 3 |
| 3 |
| 4 |
| 4 |
| 5 |
猜想an=
| n |
| n+1 |
(1)n=1时,显然成立;
(2)假设n=k时,命题成立.即ak=
| k |
| k+1 |
当n=k+1时,由题可知ak+1=
| 1 |
| 2-ak |
| 1 | ||
2-
|
| k+1 |
| k+2 |
故n=k+1时,命题也成立.
由(1)(2)可知,an=
| n |
| n+1 |
(Ⅱ)证明:∵
|
|
|
∵
| 2n-1 |
| 2n |
| 2n-1 | ||
|
| 2n-1 | ||||
|
| ||
|
a1•a3•a5…a2n-1=
| 1 |
| 2 |
| 3 |
| 4 |
| 2n-1 |
| 2n |
|
|
∴a1•a3•a5…a2n-1<
|
由于
|
|
| 2 |
| 2 |
令f'(x)=0,得cosx=
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
∴f(x)<f(0)=0,即x<
| 2 |
| π |
| 4 |
又0<
|
|
| π |
| 4 |
|
| 2 |
|
|
| 2 |
| 1 | ||
|
点评:该题考查由递推式求数列通项、证明不等式,数学归纳法是数列部分常用方法.
练习册系列答案
相关题目