题目内容

已知等差数列{an}中,a1+a5=8,a4=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn=|a1|+|a2|+|a3|+…+|an|,求Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列通项公式列出方程组求出首项和公差,由此能求出通项公式.
(Ⅱ)由an=10-2n≥0,得n≤5,利用分类讨论思想能求出Tn=|a1|+|a2|+|a3|+…+|an|的值.
解答: 解:(Ⅰ)∵等差数列{an}中,a1+a5=8,a4=2,
2a1+4d=8
a1+3d=2
,解得a1=8,d=-2,
∴an=8+(n-1)×(-2)=10-2n.
(Ⅱ)由an=10-2n≥0,得n≤5,
a5=0,a6=-2<0,
∵Tn=|a1|+|a2|+|a3|+…+|an|,
∴当n≤5时,Tn=8n+
n(n-1)
2
×(-2)
=9n-n2
当n>5时,Tn=-[8n+
n(n-1)
2
×(-2)
]+2(9×5-52)=n2-9n+40.
Tn=
9n-n2,n≤5
n2-9n+40,n>5
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网