题目内容
已知|a|<1,|b|<1,求证:|1-ab|>|a-b|
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:首先化简|1-ab|2-|a-b|2可得,|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1);结合题意中|a|<1,|b|<1,可得a、b的范围,进而可得|1-ab|2-|a-b|2>0,由不等式的性质,可得答案.
解答:
证明:∵|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1).
∵|a|<1,|b|<1,∴a2-1<0,b2-1<0.
∴|1-ab|2-|a-b|2>0,故有|1-ab|>|a-b|.
∵|a|<1,|b|<1,∴a2-1<0,b2-1<0.
∴|1-ab|2-|a-b|2>0,故有|1-ab|>|a-b|.
点评:本题考查不等式性质的基本运用,注意结合题意,进行分式、整式的转化,一般利要积的符号法则进行分析.
练习册系列答案
相关题目
双曲线2x2-y2=8的虚轴长是( )
| A、2 | ||
B、2
| ||
| C、4 | ||
D、4
|
一元二次不等式x2-x-2>0的解集是( )
| A、(∞,-1)∪(2,+∞) |
| B、(-1,2) |
| C、(-∞,-2)∪(1,+∞) |
| D、(-2,1) |