题目内容

已知直线x-y-k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有|
OA
+
OB
|≥
3
|
AB
|,那么k的取值范围是(  )
A、[
6
,+∞)
B、[
6
,2
2
C、[
2
,+∞)
D、[
2
,2
2
考点:直线和圆的方程的应用
专题:计算题,直线与圆
分析:利用平行四边形法则,借助于直线与圆的位置关系,利用直角三角形,即可求得结论.
解答: 解:设AB中点为D,则OD⊥AB,
∵|
OA
+
OB
|≥
3
|
AB
|,
∴|2
OD
|≥
3
|
AB
|,
∵|
OD
|2+
1
4
|
AB
|2=4,
∴|
OD
|2≥3,
∵直线x-y-k=0(k>0)与圆x2+y2=4交于不同的两点A、B,
∴|
OD
|2<4,
∴4>|
OD
|2≥3,
∴4>
k2
2
≥3
∵k>0,
6
≤k<2
2

故选:B.
点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网