题目内容

已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+2x.
(1)求f(0)的值;
(2)求此函数在R上的解析式.
考点:函数奇偶性的性质,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)由奇函数的性质得出f(-x)=-f(x),令x=0代入可求f(0);
(2)设x<0,从而-x>0,代入当x>0时的表达式f(x)=x2+2x可得x<0时的表达式.
解答: (1)∵函数f(x)是定义在R上的奇函数,∴f(-x)=-f(x),
∴f(-0)=-f(0),f(0)=-f(0)
∴f(0)=0;
(2)设x<0,∴-x>0,
又当x>0时,f(x)=x2+2x.
∴f(-x)=(-x)2+2(-x)=x2-2x,
∴-f(x)=x2-2x,
∴f(x)=-x2+2x,
∴当x<0时,f(x)=-x2+2x,
又由(1)知f(0)=0
f(x)=
x2+2x,x>0
0,x=0
-x2+2x,x<0
点评:本题主要考查函数解析式的求法,如果函数具备奇偶性,通常考虑函数的奇偶性在关于原点对称的两个区间上的关系解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网