题目内容
(Ⅰ)应收集多少位女生的样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率;
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
| P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
考点:独立性检验,频率分布直方图
专题:应用题,概率与统计
分析:(Ⅰ)根据15000人,其中男生10500人,女生4500人,可得应收集多少位女生的样本数据;
(Ⅱ)由频率分布直方图可得1-2×(0.100+0.025)=0.75,即可求出该校学生每周平均体育运动时间超过4小时的概率;
(Ⅲ)写出2×2列联表,求出K2,与临界值比较,即可得出结论.
(Ⅱ)由频率分布直方图可得1-2×(0.100+0.025)=0.75,即可求出该校学生每周平均体育运动时间超过4小时的概率;
(Ⅲ)写出2×2列联表,求出K2,与临界值比较,即可得出结论.
解答:
解:(Ⅰ)300×
=90,∴应收集90位女生的样本数据;
(Ⅱ)由频率分布直方图可得1-2×(0.100+0.025)=0.75,
∴该校学生每周平均体育运动时间超过4小时的概率为0.75;
(Ⅲ)由(Ⅱ)知,300位学生中有300×0.75=225人每周平均体育运动时间超过4小时,75人每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:
∴K2=
≈4.762>3.841,
∴有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
| 4500 |
| 15000 |
(Ⅱ)由频率分布直方图可得1-2×(0.100+0.025)=0.75,
∴该校学生每周平均体育运动时间超过4小时的概率为0.75;
(Ⅲ)由(Ⅱ)知,300位学生中有300×0.75=225人每周平均体育运动时间超过4小时,75人每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:
| 男生 | 女生 | 总计 | |
| 每周平均体育运动时间不超过4小时 | 45 | 30 | 75 |
| 每周平均体育运动时间超过4小时 | 165 | 60 | 225 |
| 总计 | 210 | 90 | 300 |
| 300×(45×60-165×30)2 |
| 210×90×75×225 |
∴有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
点评:本题主要考查独立性检验等基础知识,考查数形结合能力、运算求解能力以及应用用意识,考查必然与或然思想等,属于中档题.
练习册系列答案
相关题目
在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|