题目内容

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是
 
考点:抽象函数及其应用,函数的零点
专题:计算题,函数的性质及应用
分析:令x=-1,求出f(1),可得函数f(x)的周期为2,当x∈[2,3]时,f(x)=-2x2+12x-18,画出图形,根据函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,利用数形结合的方法进行求解.
解答: 解:∵f(x+2)=f(x)-f(1),
且f(x)是定义域为R的偶函数,
令x=-1可得f(-1+2)=f(-1)-f(1),
又f(-1)=f(1),
∴f(1)=0 则有f(x+2)=f(x),
∴f(x)是最小正周期为2的偶函数.
当x∈[2,3]时,f(x)=-2x2+12x-18=-2(x-3)2
函数的图象为开口向下、顶点为(3,0)的抛物线.
∵函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,
令g(x)=loga(|x|+1),则f(x)的图象和g(x)的图象至少有3个交点.
∵f(x)≤0,∴g(x)≤0,可得0<a<1,
要使函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,
则有g(2)>f(2),可得 loga(2+1)>f(2)=-2,
即loga3>-2,∴3<
1
a2
,解得-
3
3
<a<
3
3
,又0<a<1,∴0<a<
3
3

故答案为:(0,
3
3
).
点评:此题主要考查函数奇偶性、周期性及其应用,解题的过程中用到了数形结合的方法,同时考查解决抽象函数的常用方法:赋值法,正确赋值是迅速解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网