题目内容

9.四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=3,AB=2,BC=$\sqrt{3}$,求P到BD的距离.

分析 过A作AE⊥BD,垂足为E,连接PE,则PE为点P到对角线BD的距离,即可得出结论.

解答 解:如图所示,过A作AE⊥BD,垂足为E,连接PE
则PE为点P到对角线BD的距离
∵矩形ABCD,AB=2,BC=$\sqrt{3}$,可得BD=$\sqrt{7}$,
∴2×$\sqrt{3}$=$\sqrt{7}$×AE
∴AE=$\frac{2\sqrt{21}}{7}$,
又∵PA=3,PA⊥矩形ABCD
∴PE=$\sqrt{{(\frac{2\sqrt{21}}{7})}^{2}+{{3}^{2}}^{\;}}$=$\frac{5\sqrt{21}}{7}$.
故答案为:$\frac{5\sqrt{21}}{7}$.

点评 本题考查空间距离,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网