题目内容
已知0≤a1≤1,定义an+1=
.
(Ⅰ)如果a2=a3,则a2= ;
(Ⅱ)如果a1<a3,则a1的取值范围是 .
|
(Ⅰ)如果a2=a3,则a2=
(Ⅱ)如果a1<a3,则a1的取值范围是
考点:数列递推式,数列的函数特性
专题:等差数列与等比数列
分析:(Ⅰ)若0≤a2<
,则a3=2a2=a2;若a2≥
,则a3=2a2-1=a2,由此能求出a2=0,或a2=1.
(Ⅱ)当0≤a1<
时,a2=2a1.若0≤a2<
,则a3=2a2=4a1,若a2≥
,则a3=2a2-1=4a1-1;②当a1≥
时,a2=2a1-1.若0≤a2<
,则a3=2a2=4a1-2,若a2≥
,则a3=2a2-1=4a1-3.由此进行分类讨论,能求出a1<a3时,a1的取值范围.
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)当0≤a1<
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:(Ⅰ)∵0≤a1≤1,定义an+1=
,a2=a3,
∴若0≤a2<
,则a3=2a2=a2,解得a2=0.
若a2≥
,则a3=2a2-1=a2,解得a2=1.
∴a2=0,或a2=1.
故答案为:0或1.
(Ⅱ)①当0≤a1<
时,a2=2a1.
若0≤a2<
,则a3=2a2=4a1,
∵a1<a3,∴a1<4a1,且0≤2a1<
,
∴0<a1<
;
若a2≥
,则a3=2a2-1=4a1-1,
∵a1<a3,∴
,解得
<a1<
.
②当a1≥
时,a2=2a1-1.
若0≤a2<
,则a3=2a2=4a1-2,
∵a1<a3,∴
,解得
<a1<
.
若a2≥
,则a3=2a2-1=4a1-3,
∵a1<a3,∴
,解得a1>1,∵0≤a1≤1,∴a1>1不成立.
综上,如果a1<a3,则a1的取值范围是(0,
)∪(
,
)∪(
,
).
故答案为:(0,
)∪(
,
)∪(
,
).
|
∴若0≤a2<
| 1 |
| 2 |
若a2≥
| 1 |
| 2 |
∴a2=0,或a2=1.
故答案为:0或1.
(Ⅱ)①当0≤a1<
| 1 |
| 2 |
若0≤a2<
| 1 |
| 2 |
∵a1<a3,∴a1<4a1,且0≤2a1<
| 1 |
| 2 |
∴0<a1<
| 1 |
| 4 |
若a2≥
| 1 |
| 2 |
∵a1<a3,∴
|
| 1 |
| 3 |
| 1 |
| 2 |
②当a1≥
| 1 |
| 2 |
若0≤a2<
| 1 |
| 2 |
∵a1<a3,∴
|
| 2 |
| 3 |
| 3 |
| 4 |
若a2≥
| 1 |
| 2 |
∵a1<a3,∴
|
综上,如果a1<a3,则a1的取值范围是(0,
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
故答案为:(0,
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
点评:本题以数列为载体,考查实数的取值范围的求法,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关题目
若球的半径为R,作内接于球的圆柱,则其侧面积的最大值为( )
| A、2πR2 | ||
| B、πR2 | ||
| C、4πR2 | ||
D、
|