题目内容
设f(x)是定义在R上的函数,g(x)=
f(
)x0(1-x)n+
f(
)x(1-x)n-1+…+
f(
)xn(1-x)0
(1)若f(x)=1,求g(x);
(2)若f(x)=x,求g(x).
| C | 0 n |
| 0 |
| n |
| C | 1 n |
| 1 |
| n |
| C | n n |
| n |
| n |
(1)若f(x)=1,求g(x);
(2)若f(x)=x,求g(x).
考点:二项式定理的应用
专题:计算题,二项式定理
分析:(1)若f(x)=1,则f(
)=f(
)=…=f(
)=1,易求g(x)=1;
(2)若f(x)=x,则f(
)=
(k=0,1,2,…,n),g(x)=
x0(1-x)n+
x(1-x)n-1+…+
xn,易证
=
,代入上式,逆用二项式定理即可求得答案.
| 0 |
| n |
| 1 |
| n |
| n |
| n |
(2)若f(x)=x,则f(
| k |
| n |
| k |
| n |
| C | 0 n |
| 0 |
| n |
| C | 1 n |
| 1 |
| n |
| C | n n |
| n |
| n |
| k |
| n |
| C | k n |
| C | k-1 n-1 |
解答:
解(1)若f(x)=1,则f(
)=f(
)=…=f(
)=1,
∴g(x)=
x0(1-x)n+
x(1-x)n-1+…+
xn(1-x)0=(1-x+x)n=1,
又00无意义,
即g(x)=1(x∈R,且x≠0,x≠1);
(2)若f(x)=x,
则f(
)=
(k=0,1,2,…,n),
∴g(x)=
x0(1-x)n+
x(1-x)n-1+…+
xn,
∵
=
=
=
,
∴g(x)=0+
x(1-x)n-1+
x2(1-x)n-2+…+
xn
=[
(1-x)n-1+
x(1-x)n-2+…+
xn-1]x
=x(1-x+x)n-1
=x
∴g(x)=x(x∈R,且x≠0,x≠1).
| 0 |
| n |
| 1 |
| n |
| n |
| n |
∴g(x)=
| C | 0 n |
| C | 1 n |
| C | n n |
又00无意义,
即g(x)=1(x∈R,且x≠0,x≠1);
(2)若f(x)=x,
则f(
| k |
| n |
| k |
| n |
∴g(x)=
| C | 0 n |
| 0 |
| n |
| C | 1 n |
| 1 |
| n |
| C | n n |
| n |
| n |
∵
| k |
| n |
| C | k n |
| k |
| n |
| n! |
| k!(n-k)! |
| (n-1)! |
| (k-1)!(n-1-(k-1))! |
| C | k-1 n-1 |
∴g(x)=0+
| C | 0 n-1 |
| C | 1 n-1 |
| C | n-1 n-1 |
=[
| C | 0 n-1 |
| C | 1 n-1 |
| C | n-1 n-1 |
=x(1-x+x)n-1
=x
∴g(x)=x(x∈R,且x≠0,x≠1).
点评:本题考查二项式定理,着重考查转化思想与运算能力,求得
=
是关键,属于难题.
| k |
| n |
| C | k n |
| C | k-1 n-1 |
练习册系列答案
相关题目
从圆x2-2x+y2-2y+1=0外一点P(-1,1)向这个圆作两条切线,则该圆夹在两切线间的劣弧的长为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
已知集合S={1,2},集合T={x|(x-1)(x-3)=0},那么S∪T=( )
| A、∅ | B、{1} |
| C、{1,2} | D、{1,2,3} |